UNIVERSITY

MATH 943

CHUKA

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE DEGREE OF DOCTORATE OF PHILOSOPHY IN APPLIED STATISTICS

MATH 943: GENERALIZED LINEAR MODELS AND APPLICATIONS

STREAMS: PhD

TIME: 3 HOURS

2.30 P.M. – 5.30 P.M

DAY/DATE: TUESDAY 13/8/2019

INSTRUCTIONS

- Answer any **THREE** questions.
- Do not write anything on the question paper.

QUESTION ONE (20 Marks)

Suppose X is a binary random variable that takes value 0 with probability p and value 1 with

probability 1-*p*. let X_1, \ldots, X_n be iid samples of *X*.

- (i) Compute a maximum likelihood estimation (MLE) estimate of *p*. (5 marks)
- (ii) Is \hat{p} an unbiased estimate of p? Prove the answer. (5 marks)
- (iii) Compute the expected square error of \hat{p} in terms of p. (5 marks)
- (iv) Prove that if you know that *p* lies in the interval $\left[\frac{1}{4}; \frac{3}{4}\right]$ and you are given only n = 3 samples of *X*, then \hat{p} is an inadmissible estimator of *p* when minimising the expected square error of estimation. (5 marks)

QUESTION TWO (20 Marks)

(a) Suppose that the p.d.f of a random variable X has a 2-component mixture form:

 $p_{\alpha}(x) = \alpha * p_1(x) + (1-\alpha) * p_2(x)$

One component is the density model $p_1(x)$ and the other component is the density model $p_2(x)$. We know both $p_1(x)$ and $p_2(x)$. We do not know α . Given that $\{x_1, x_2, \dots, x_n\}$ are iid samples from the distribution of X, give EM algorithm for estimating α . Describe the E-Step and M-step clearly in your answer (give clear step by step derivation).

(12 Marks)

(b) Consider independent binary features

$$X = (x_1, ..., x_d)^t$$
 $p_i = Pr[x_i = 1 | \omega_1)$ $q_i = Pr[x_i = 1 | \omega_2)$

and assuming conditional independence

$$P(\mathbf{X} \mid \omega_1) = \prod_{i=1}^d p_i^{x_i} (1 - p_i)^{1 - x_i}$$
$$P(\mathbf{X} \mid \omega_2) = \prod_{i=1}^d q_i^{x_i} (1 - q_i)^{1 - x_i}$$

(i) Derive the likelihood ratio.

(ii) Derive the discriminant function. (4 marks)

(4 marks)

(6 Marks)

QUESTION THREE (20 Marks)

The data in Table 1 relate to grain yield (Y), plant height (X_1) , and tiller number (X_2) of sorghum.

Table 1: Performance of Sorghum with respect to grain yield (Kg/ha), plant height (cm) and tiller numbers/hill

Grain yield Kg/ha (Y)	Plant height $cm(X_1)$	Tiller No./hill (X ₂)
5755	110.5	14.5
5939	105.4	16.0
6010	118.1	14.6
6545	104.5	18.2
6730	93.6	15.4
6750	84.1	17.6
6899	77.8	17.9
7862	75.6	19.4

- (i) Fit a multiple linear regression model of Y on X_i and X_2 . (8 Marks)
- (ii) Determine variance of β_o , β_1 and β_2 .
- (iii) Test if the fitted model is adequate. Take $\alpha = 0.05$. (6 Marks)

QUESTION FOUR (20 Marks)

Linear regression models a real-valued output *Y* given an input vector *X* as

$$Y/X \sim N(\mu(X), \sigma^2)$$

where the mean is a linear function of the input: $\mu(X) = \beta^T X = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$

Logistic regression models a binary output *Y* by

 $Y \mid X \sim Bernoulli(\Theta(X))$

MATH 943

where the Bernoulli parameter is related to $\beta^T X$ by the logit transformation

$$logit(\Theta(X)) \equiv log\left(\frac{\Theta(X)}{1-\Theta(X)}\right) = \beta^T X$$

Given data { $(x_1, y_1), (x_2, y_2), ..., (x_n x_n)$ }, for each of the two regression models above, show that at the MLE β

$$\sum_{i=1}^{n} x_i * y_i = \sum_{i=1}^{n} x_i * E[Y \mid X = x_i, \beta = \hat{\beta}]$$
