UNIVERSITY

MATH 925

CHUKA

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DOCTOR OF PHILOSOPHY IN APPLIED MATHEMATICS

MATH 925: MATHEMATICAL BIOLOGY

STREAMS: PhD

TIME: 3 HOURS

2.30 P.M. – 5.30 P.M

DAY/DATE: TUESDAY 13/8/2019 INSTRUCTIONS: ANSWER ALL QUESTIONS

QUESTION ONE

(a) Given the system $S(\overline{X}, R)$ denoting a spherical region in the state space with centre at \overline{X} and radius R. define the following terms

(i)	An equilibrium point \bar{x}	[2 marks]
(ii)	An asymptotically stable equilibrium point \bar{x}	[2 marks]

- (iii) A marginally stable equilibrium point \bar{x} [2 marks]
- (iv) An unstable equilibrium point \bar{x} [2 marks]
- (b) Given the system

 $\dot{x}(t) = x(t)$ and $\dot{y}(t) = -k y(t)$

Find the solution of the system and determine the stability of the system when k = 1, 2and -1 [7 marks]

QUESTION TWO

(a) Given the system $\dot{x}_1 = k_1(1 - \varepsilon x_1 - x_2)x_1, 0 < x \ll 1$ $\dot{x}_2 = k_2(1 - x_1)x_2$

MATH 925

Show that the system has three equilibrium points

 $(0,0), (1,1-\varepsilon)$ and $(\frac{1}{q},0)$ and linearize the system about the equilibrium points and determine the nature of the equilibrium points. [8 marks]

- (b) (i) State the Liapunor theorem [3 marks]
 - (ii) Given the system $\dot{x}_1(t) = x_2(t), \dot{x}_2(t) = x_1(t) - x_2(t)$, show that the equilibrium point (0,0) is stable by liapunor theorem. [4 marks]

QUESTION THREE

(a) Determine the invariant set for the system

$$\dot{x}_1 = x_2 + x_1(1 - x_1^2 - x_2^2)$$

$$\dot{x}_2 = -x_1 + x_2(1 - x_1^2 - x_2^2)$$
 [3 marks]

(b) Determine the birfurcation point for the system [4 marks]

$$\dot{x}_1 = x_2$$
$$\dot{x}_2 = mx_1$$

(c) Find the bifurcation points of the system

$$\dot{x}_1 = -kx_1 + x_2$$

$$\dot{x}_2 = -kx_1 - 3x_2$$
 [8 marks]

QUESTION FOUR

(a) Show that the system

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = \mu x_2 - x_1^2 - x_2$, has two equilibrium points (0, 0) and (μ , 0) and a transcritical bifurcation

(b)	Explain the 3 main types of interactions in population dynamics.	[3 marks]
(c)	Explain the main assumptions in the predator prey model	[3 marks]
(d)	Explain the SIR epidemic model	[2 marks]
