CHUKA UNIVERSITY AUG-DEC 2019 SESSION

FIRST YEAR BLOCK 1 EXAMINATION FOR THE DEGREE OF MSc IN PURE MATHEMATICS

MATH 805: ABSTRACT INTEGRATION 1

TIME: 3 HRS

INSTRUCTIONS:

DATE:

Answer ANY THREE Questions. Do not write on the question paper.

QUESTION ONE: (20 MARKS)

(a) Let $E_n \subseteq \mathbb{R} \ \forall n \in \mathbb{N}$, prove that the set function $M^*: \mathcal{P}(\mathbb{R}) \to \mathbb{R}^* \ge 0$ is finitely subadditive. i.e.		
$\mathcal{M}^* \left(\bigcup_{n=1}^k \mathbb{E}_n \right) \le \sum_n^k \mathcal{M}^* (\mathbb{E}_n)$	(3mks)	
(b) Let E be an atmost countable set (i.e. suppose E is the set of all rational numbers, \mathbf{Q}), prove that		
$\mathcal{M}^*[\mathbf{Q}] = 0$	(2mks)	
(c) Define a non-degenerate interval <i>I</i> . Hence show that every non-degenerate interval is countable		
	(3mks)	
(d) Let ρ be the set of all intervals of \mathbb{R} and $\mathscr{P}(\mathbb{R})$ the class of all subsets of \mathbb{R} . Suppose the set $\lambda: \sigma \to \mathbb{R}^* \ge 0$ represent a length function for a non-negative real number $\lambda(I)$, and $\mathcal{M}^*: \mathscr{P}(\mathbb{R})$ be the Outer Lebesgues measure of a subset <i>E</i> of \mathbb{R} . Prove that M^* is an extension of λ . i.e. $M^*[I] = \lambda(I) \forall I \in \rho$		

QUESTION TWO: (20 MARKS)

(a) Prove that if E is non-Lebesque measurable subset of \mathbb{R} , then there exists a subset A of E	such that
$0 < \mathcal{M}^*[A] < \infty$	(5mks)

- (b) By constructing the Cantor's set p, prove that this set is Lebesque measurable (9mks)
- (c) Let X, Y be non-void sets and $f: X \to Y$ be a function. Let \supseteq be the σ algebra of subsets of Y and let $\mathfrak{x} = \{f^{-1}(E): E \in \supseteq\}$. Prove that then \mathfrak{x} is the σ algebra of subsets of X (6mks)

QUESTION THREE: (20 MARKS)

(a) Distinguish an almost everywhere convergence and an almost uniform convergence	e. Hence state and
prove the Egoroff's Theorem	(6mks)
	·- • •

(b) State and prove Fatou's Lemma (7mks)

(c) (i) Prove that the cardinality of the Borel set, Card $\mathcal{B}(\mathbb{R}) = c$ (4mks)

(ii) Hence show that the Borel set $\mathcal{B}(\mathbb{R})$ is a proper subset of a Lebesque measurable set (3mks)

QUESTION FOUR: (20 MARKS)

- (a) Let (X, x, μ) be a complete measure space and f, g be functions defined μ. a. e on X, such that f ≡ g μ. a. e. Prove that if f is x-measurable, so is g.
 (6mks)
- (b) State without proof the Approximation Theorem in measurable spaces (2mks)
- (c) Let $f: X \to \mathbb{R}^*$ be a function, define f^+, f^- as positive and negative parts of f respectively, show that $f = f^+ f^-$ (4mks)
- (d) Let (X, \mathfrak{x}) be a measurable space and $f: X \to \mathbb{C}$ a function with $f = f_1 + if_2$, where $f_1 = \mathbb{R}ef$, $f_2 = \inf f$ and $i = \sqrt{-1}$. Show that the following statements are equivalent:
 - (i) f is x-measurable
 - (ii) f_1, f_2 are both is \mathfrak{x} -measurable

END

(8mks)