

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF

CHEM 437: ORGANIC SPECTROSCOPY

STREAMS:

TIME: 2 HOURS

DAY/DATE: TUESDAY 09/04/2019

8.30 A.M. – 10.30 A.M.

INSTRUCTIONS:

• Answer question ONE and any other TWO questions.

QUESTION ONE (30 MARKS)

1. should maxin contai cell) o concer	(a) ler num at 3 ning the of 0.726 ntration	(i) 312 nm e two and 0.5 s of con	Compound A and B absorb exhibits an absorptio at 312 nm (a (a=13 comp 44 at 267 a npound A (3 marks)	in the ult on maxim =12.6). (36) and c oounds e: and 312 t and B	traviolent region. Compound A na at 267 nm (a=157) and a trailing Compound B has an absorption loes not absorb at 267 nm. A solution xhibits absorbance (using a 1 cm – nm respectively. Calculate the in mg/l.
molar		(ii)	A mine (weak base) from sa amine picrates exhil absorptivity of 1.25	alts with bit an abs $\times 10^4$	picric acid (trinitrophenol), and all sorption maximum at 359 nm with a . 0.2 g sample of aniline,
$C_6 H$	$I_5 NH_2$	is disso	olved	in 500	ml of water. A 25. 0 ml liquor is
reacted with picric acid in a 250 volume. A 10.0 ml a liquor of this is read at 359 nm in a 1 cm cell. If the percent purity of the aniline. (3 $\frac{1}{2}$ marks)			id in a 250 iquor of this is cm cell. If the aniline. (3 $\frac{1}{2}$ marks)		ml. volumetric flask and diluted to diluted to 100 ml and the absorbance absorbance is 0.425. Calculate the

(b) (i) Account for the following observation "The number of the fundamental vibrational frequencies of acetylene observed are less than the

(5 mar	·ks)	expected theoretical values."		
	(ii)	The harmonic vibrational frequency of HCl in wavenumber is 29 cm^{-1}		
		(I) Calculate the energies of the first two vibrational levels in . (2) $\frac{1}{2}$	Joules.	
marks)				
electromagnet	tic 1	(II) Determine the wavelength for a transition from the v=0 to the level is the transition in the infrared region of the spectrum?	the v=1	
	$(2 \frac{1}{2})$	marks)		
(c)	(i)	State five rules used to interpret bonding from fracture patterns of molecules.	organic (3 $\frac{1}{2}$	
marks)			` _	
	(ii)	The mass spectrum of butyrophe none (n-butylphenylketone, $C_6H_5COCH_2CH_2CH_2CH_3$) shows peaks at M/Z 162, 120, 10	5 and	
85.		Interpret these		
	(iii)	In compound Gc-MS analyses fatty acid analyses fatty acid methy can be identified by the presence of a peak at M/Z 74: Expl observation.	l esters lain this	
(1 mar	·k)			
(d) marks)	(i)	Explain how secondary magnetic fields associated with the molecu affect the chemical shirt in NMR.	ıle (2	
marks)	(ii)	Discuss the two types of shielding phenomena which modify resor peaks in an NMR spectrum.	nance (2	
mark)	(iii)	Give the similarities between proton NMR and carbon-13 NMR spectroscopy.	(1	

marks)	(iv)	State three short-comings of carbon-13 NMR spectra.	$(1 \frac{1}{2})$
illarks)	(v)	State how many peaks would you expect to see in the ca	rbon-13 spectrum
Mark)			

QUESTION TWO (20 MARKS)

2. (a) (i) In the determination of acetone in biological fluids the following calibration curve and unknown data obtained are given in the table below.

Standard	Absorbance
Mg acetone 100ml	
Reagent blank	0.053
2.0	0.097
4.0	0.143
6.0	0.190
8.0	0.221
10.0	0.238
Normal blood	0.119
Ketonic blood	0.222
Normal urine	0.150
Ketonic urine (diluted)	0.230

All the absorbance measurements were against a water blank. Determine the ketone concentration in each of the four unknowns and assuming a 1:25 (initial: final) dilution was used. Calculate the ketone concentration in the undiluted urine. (7 marks)

(ii) Account for the difference in absorption spectrum of a molecule which contains hydrogen covalently bound to oxygen or nitrogen in a non-polar solvent (figure 1) and in a polar solvent (figure 2)

Fig 1

Fig 2

Absorption of a molecule in a Non polar solvent (hexane)

marks)

molecule in a polar solvent (ethanol) (4

Absorption spectrum for the

- (b) Explain how the ultraviolet spectrum can be used to decide between the following organic compounds:
 - (i) (2 marks)

(3 marks)

(2 marks)

(iii)

(ii)

(2 marks)

Table 1: woodward's rules for Diene

(iv)

Parent heteroannular diene (a)					
Absorption of parent diene system					
C=C-C=C	217 nm				
Parent homoannular diene (b)					
Add to each substituent					
Double bond extending conjugation to diene system	30 nm				
Diene system within a ring	36 nm				
Exocyclic nature of double bond in conjugated system	5 nm				
Each alkyl substituent or ring residue					
Auxochrome					
O – acyl	0 nm				
O – alkyl	6 nm				
S – alkyl	30 nm				
N – alkyl	60 nm				
<u>Cl</u> , Br	5 nm				

<u>Note</u>

- Diene system not involved in a ring structure. Diene system within ring structure (a)
- (b)

<u>Table 2: Rules for</u> α, β <u>unsaturated ketones and aldehyde absorption</u>

$$\delta - 1 \beta \alpha$$

C=C-C=C-C=O

-Value assigned to parent	α,β	- unsaturated six ring or acyclic ketone	215 nm
-Value assigned to parent	α,β	-unsaturated five ring ketone	202
nm -Value assigned to parent	α,β	-unsaturated aldehyde	207
nm			

Increment added for	Shift to longer λ max	Increment added for	Shift to longer
	(nm)		λ_{max}
Each exocyclic double bond	5	s-alkyl	
-Diene within a ring	39	β	85
-Double bond extending the	30	Cl	
conjugation		α	15
Each alkyl substituent		β	12
α	10	Br	
β	12	α	25
Y and higher	18	β	30
Each		NR2	
ОН		β	95
α	35		
β	30		
δ	50		
0-acyl			
α,β,σ	6		
0-me			
Α	35		
β	30		
Y	17		
δ	31		

QUESTION THREE (20 MARKS)

(a) The presence of ethylene in samples of ethane was determined by using the absorbance band of ethylene at 1443 cm^{-1} . A series of standards gave the following data

% of ethylene			0.50	1.00	2.00	3.00	
Absorbance			0.120	0.240	0.480	0.719	
(i) (ii)	Explain Calcula 0.634 v	Explain how the absorbance of ethylene was determined. (4 marks) Calculate the percentage of ethylene in an unknown sample that had an absorbance of .634 when the same cell and instrument were used. (4 marks)					
(b) marks	(i))	Stat	State the advantages of pressed pellet technique over Nujol technique in IR analysis. (2				
	(ii)	Hov	w could infrared spe following pairs	ectroscopy be used t and how reliable w	to distinguish the m ould these distinction	embers of the ons be?	
	(I)	Nat	tural rubber (cis-pol	yiso prene) and but	yl rubber (polyisobu	itene (1 mark)	
	(II)	The	e CIS and Trans isor	ners of 3-hexene.		(1 mark)	
	(III)	1-he	exyne and 3-hexyne	e? Assume that you	do not have access	to any authenticated	
(c) collect spectra betwee	(i) ted as um of th en the tw	e san vo (4	plain which function IR spectrum giv a liquid me c $\frac{1}{2}$ marks)	al groups are preserven in fig 1. (fig 1 a film between salt p compound collected spectrum.	nt in the compound it's the spectrum of lates while fig 1 b s l as vapour. Explain	on the basis of its the compound hows the IR also the differences	
propio	(ii) phenone	Hov e,	w might the followin absorption spec	ng pairs of isomers tra, assuming you h	be distinguished fro ave both spetra for	om infrared each pair	

 $PhCOCH_2CH_3$ and phenylacetone.

(1

mark)

(iii) The hydrolysis of an ester R COO R, in dilute aqueous KOH produces the alcohol and the potassium salt of the carboxylic acid. The progress of the hydrolysis can be followed by infrared spectroscopy. Suggest how this procedure might

1

be			carried out using a prominent infrared feature as a marker. $(1 \ \overline{2})$
mark	ks)		
QUI	ESTION	FOUR	. (20 MARKS)
4.	(a)	(i)	Explain various factors which contribute to proton NMR spectra of compounds such as RCON H_2 with protons bonded to the
nitrogen atom (6 marks)		ks)	to be complicated.
1		(ii)	Account for small broad peaks located at 6.3 and 6.6 ppm as shown by HNMR spectra of propionamide given in fig 2. (4)
$\frac{1}{2}$	marks)		
	(b)	(i)	Figure 3 shows the mass spectrum of a certain organic compound. Deduce the structure of the compound. (7 marks)
rema mass	ains the s analyzer (1 mar	(ii) ™s ™k)	The dominant mass analyzer in proteomics, especially if matrix-associated laser desorption/ionization (MALDI) is used is the time of flight (TOF). However, the dominant mass analyzer in GC-MS and LC-MS quadrupole. Explain what it is about these applications and that make one or the other preferred.
by perp of cu	endicular ırvature	(iii)	A singly protonated ion having M/Z = i 375.9 is initially accelerated an electric potential of 5,000 V. After it is accelerated, it enters a homogeneous magnetic field with a strength of 4 T, applied to the path of the ion's travel. Calculate the resultant radius for this ion in the magnetic field {IV=1 JC^{-1} , $1J=1 Kg m^2 s^{-2}$, $1C=IAS$, $e=1.602 \times 10^{-19} C$
			$1u = 1 amu = 1.6605 \times 10^{-27} kg,$ $1T = 1 Kg C^{-1} S^{-1} = 1 Kg A^{-1} s^{-2}, v (velocity) = m s^{-1}$
			,