CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN CHEMISTRY AND BACHELOR OF EDUCATION SCIENCE

CHEM 416: COMPARATIVE STUDY OF D – AND F- BLOCK ELEMENTS

STREAMS:

TIME: 2 HOURS

8.30 A.M – 10.30 A.M

DAY/DATE: FRIDAY 12/04/2019

INSTRUCTIONS

Answer question One (Compulsory) and any other Two questions

QUESTION ONE [30 MARKS]

(a) Determine the oxidation state of the metal and the total valence electron count for each of the complexes. (6 marks)

(i) $[Fe(CO)_2(CN)_4]^{2-1}$	(ii) [Re(CO) ₅ (PF ₃)] ⁺	(iii) $[(\eta^5 - C_5 H_5) Cr(CO)_3]^-$
(iv) (CO) ₅ Mn–Mn(CO) ₅	(v) [Ir(PPh ₃) ₂ (CO)Cl]	(vi) $(\eta^5 - C_5 H_5)(\eta^3 - C_5 H_5) W(CO)_2$

(b) Discuss the following reactions with the aid of a suitable example. (10 marks)

(i) Migratory insertion (ii) oxidative addition (iii) reductive elimination

(c) Explain the vibrational frequencies of the carbonyl ligand in the following complexes.

(2marks)

Complex	<u>vCO (cm⁻¹)</u>
[Ti(CO) ₆] ²⁻	1748
[Cr(CO) ₆]	2000
$[Mn(CO)_6]^+$	2100

CHEM 416

(d) Order the following phosphines from the highest to the weakest σ -donor. Justify your answers (4 marks)

(i) $P(t-Bu)_3$ (ii) PF_3 (iii) PPh_3 (iv) $P(Bu)_3$

(e) Discuss, with the aid of suitable examples, the pathways through which metal alkyl complexes decomposes. (8 marks)

QUESTION TWO [20 MARKS]

(a) Compare and contrast homogeneous and heterogeneous catalysis.	(6 marks)	
(b) The Monsanto process is used for industrial production of acetic acid using a rhodium carbonyl iodide, $[RhI_2(CO)_2]^-$, catalyst.		
(i) Write a balanced equation for the overall reaction	(1 mark)	
(ii) Draw the catalytic cycle for the process	(6 marks)	
(iii) Name the elementary steps of the reaction	(3 marks)	

(iv) Explain the advantages of the Monsanto process over the cobalt-catalyzed BASF process for industrial production of acetic acid . (4 marks)

QUESTION THREE [20 MARKS]

(a) Draw a well labelled catalytic cycle for the Pd-catalyzed Stille cross-coupling of 2iodotoluene and tributyl(vinyl)stannane shown below. The rate of migration of groups from R_3SnX compounds is alkenyl > aryl > allyl > alkyl (7 marks)

(b) Consider the following hydroacylation reaction:

(i) Draw the catalytic cycle for the reaction indicating the oxidation states and the electron count of all species. (5 marks)

CHEM 416

(ii) Name the elementary reaction steps of the reaction.
(2¹/₂ marks)
(iii) Draw the catalytic cycle for the following by-product of the reaction.
(4¹/₂ marks)

R + R'CHO (PPh₃)₃RhCl (5 mol%) o-xylene 150°C

(iv) Explain how the formation of the by-product in (iii) minimized? (1 mark)

QUESTION FOUR [20 MARKS]

(a) Describe the production (reaction conditions, mechanisms, etc.) of propylene using Ziegler-Natta catalysts. (8 marks)

(b) Consider the following reaction:

(i) Draw the catalytic cycle for the reaction indicating the oxidation states and the electron count
of all species.(7 marks)(ii) Name the elementary reaction steps of the reaction.(3 marks)(iii) Explain the advantages of HRh(CO)(PPh_3)_3 over cobalt catalysts.(2 marks)
