CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN APPLIED COMPUTER SCIENCE

ACSC 225: DATA STRUCTURES AND ALGORITHMS

STREAMS: BSC (APPLIED. COMP. SCI)

TIME: 2 HOURS

DAY/DATE: MONDAY 15/4/2019	2.30 P.M. – 4.30 P.M

INSTRUCTIONS

- Attempt question ONE (Section A) and any other TWO from Section B
- Marks are awarded for clear and concise answers

SECTION A-COMPULSORY

return x;

QUESTION ONE [30 MARKS]

(a)	What are the steps to inserting a new item at the head of a linked list	[4 Marks]
(b)	Describe how a stack is implemented using linked lists	[4 Marks]
(c)	Give THREE applications of graphs	[3 Marks]
(d)	Using a flow-chart, represent the algorithm for a push operation in a stack	[3 Marks]
(e)	What is the order of growth of the running time of the following java function	[4 Marks]
	public static int f2(int N)	
	{	
	int $x = 0$;	
	for (int $i = 0$; $i < N$; $i + +$)	
	for (int $j = 0; j < i; j++$)	
	x++;	

ACSC 225

(f) While giving relevant examples, differentiate between:

(i) Breadth first search and depth first search		[4 Marks]
(ii) Abs	stract data type and data structure	[4 Marks]
(iii)	Enqueue and Dequeue operations in a queue	[4
Marks]		

SECTION B- ANSWER ANY TWO QUESTIONS

QUESTION TWO [20 MARKS]

(a) Study the binary tree shown below and then answer questions that follow:

(i)	List all the leaves in the tree	[4 Marks]
(ii)	Construct a binary search tree using the data	[6 Marks]
(iii)	Construct Huffman tree using the data	[10 Marks]

QUESTION THREE [20 MARKS]

(a)	Using the following data: 65, 63, 76, 45		
	(i)	Construct an heap tree	[5 Marks]
	(ii)	Sort the data using heap sort	[5 Marks]

(b) Using the graph below:

Page 2 of 3

(i) Construct adjacency matrix	[5 Marks]
(ii)Adjacency list	[5 Marks]

QUESTION FOUR [20 MARKS]

Given the following set of data: 73, 33, 26 and 47, illustrate how you would sort the data using:

(i)	Bubble Sort	[5 marks]
(ii)	Merge Sort	[5 Marks]
(iii)	Quick Sort	[5 Marks]
(iv)	Selection Sort	[5 Marks]

QUESTION FIVE [20 MARKS]

(a)	Using the fo	ollowing data:	65,87,53,32,62,46,5	56,83
()				-)

(i) Construct an appropriate hash table [4 Marks]

[4

(ii) Using the hash table constructed, illustrate the algorithm for searching item 53

Marks]

(b) Below is a binary tree. Write the order of the nodes visited in:

(i)	In-order traversal	[4 Marks]
(ii)	Pre-order traversal	[4 Marks]
(iii)	Post order traversal	[4 Marks]
