CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN ACTUARIAL SCIENCE

ACMT 111: COMPUTATIONAL METHODS AND DATA ANALYSIS I
STREAMS: BSC (ACTUARIAL SCIENCE)
TIME: 2 HOURS
DAY/DATE: TUESDAY 16/04/2019
11.30 A.M. - 1.30 P.M.

INSTRUCTIONS:

- Answer question ONE and TWO other questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE (30 MARKS)

a) Define the following terms
i) Algorithm
ii) Debugging
iii) Program
iv) Data frame
v) Vectors
b) Name FOUR components of the flow control in statistical computing
c) State what the following command does
(3 marks)

$$
x^{<}-3 \text { if }\left(x^{>} 2\right) y^{<}-2^{i} \quad x \text { else } y^{<}-3^{b}
$$

d) State and describe five types of data representation in a computer
e) Write an algorithm for computing the variance given by the equation below

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{i} i
$$

f) Describe a general algorithm for determining the largest representable number without producing overflow
g) Consider the continuous function

$$
f(x)=\left\{\begin{array}{lc}
x^{2}+2 x+3 & \text { if } x^{<} 0 \\
2 x-0.5 x^{2} & \text { if } 0 \leq x^{<} 2 \\
x^{2}+4 x-7 & \text { if } 2 \leq x
\end{array}\right.
$$

Write a function tmpFn , which takes a single argument xVec . The function should return the vector of values of the function $f(x)$ evaluated at the values in x Vec. Hence, plot the function $f(x)$ for $-3^{<} x^{<} 3$

QUESTION TWO (20 MARKS)

a) State a step process of plotting the pie chart of a continuous variable called eruptions duration in faithful dataset of \mathbf{R}
b) Discuss the three sources of errors in computational methods
c) Find the smaller root of the equation $x^{2}-32 x+1=0$ correct to four significant figures.
d) Find the number of terms of the exponential series such that sum gives the value of e^{2} Correct to six decimal places at $\mathrm{x}=1$
e) Describe the four features of algorithm

QUESTION THREE (20 MARKS)
a) Highlight the consequences of violating exploratory data assumptions
b) Discuss a step by step procedure of importing data from
i) SPSS
ii) EXCEL
into R .
c) Define the term exploratory data analysis and state its attributes
d) With examples, explain what the following programming terms mean in R (6 marks)
i) if ()
ii) while ()
iii) ifelse ()

QUESTION FOUR (20 MARKS)

a) Describe major data representation in the computer
b) Find the smaller root of the equation $x^{2}-400 x+1=0$ using four digit arithmetic (4 marks)
c) Define the term normalized floating point and give an example
d) Clearly describe three philosophies of data analysis

QUESTION FIVE (20MARKS)
a) Identify and describe five errors encountered in numerical computation
b) State the four major assumptions of exploratory data analysis
c) Suppose $x_{o}=1$ and $x_{1}=2$ and

$$
x_{j}=x_{j-1}-\frac{1}{x_{j-1}} \text { for } j=1,2, \ldots
$$

Write a function testloop which takes the single argument n and returns the first $n-l$ values of the sequence ($\begin{array}{cc}x_{j} & \text {) } \mathrm{j} \geq 0 \text { that means the values of } \quad x_{0}, x_{1}, x_{2}, \ldots \ldots, x_{n-2}, ~\end{array}$ marks)
d) Write a program that calculates the sum of cubes of positive integers from 1 to n for a given value of n, i.e.,

$$
\sum_{i}^{n} i^{3}
$$

Check your code against the direct formula

$$
\begin{gathered}
\frac{n(n+1)}{2} i^{2} \\
\sum_{i}^{n} i^{3}=i
\end{gathered}
$$

For different values of n, such as $n=3, n=30$, and $n=30$

