UNIVERSITY

CHUKA

UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELORS OF SCIENCE MATHEMATICS

MATH 204: ALGEBRAIC STRUCTURES

STREAMS: `` As above``

TIME: 2HRS

DAY/DATE:

•••••

INSTRUCTIONS:

- Answer Question **ONE** and any other **TWO** Questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a **closed book exam**, No reference materials are allowed in the examination room
- There will be **No** use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE (30 MARKS)

a) Let *be a binary operation on the set of integers, defined by

for every . Determine whether or not * is

- i. Commutative
- ii. Associative
- iii. Find an identity element with respect to * if it exists (4 marks)

b) Let denote the set of all 2x2 matrices with integer coefficients, whose determinant is one.
 Verify whether or not is a group under matrix multiplication .

(5 marks)

- c) Given a group G, define the centre of G,(z(G)) and show that it is a normal subgroup of G (4 marks)
- d) Prove that a group G is abelian, then the mapdefined by ,is a group homomorphism (2 marks)
- e) Suppose a,b and c are elements of an integral domain D such that ab=ac and . Prove that b=c (3 marks)
- f) Verify whether or not the following statements are true about groups
 - i. A group of order 21 has a subgroup of order 10 (2 marks)
 - ii. Every cyclic group is abelian (2 marks)
- g) The addition and part of the multiplication table for the ring R={a,b,c,d} are given below. Use the distributive laws to complete the multiplication table below

(4 marks)

+	Α	В	С	D
А	Α	Α	С	D
В	В	С	D	А
С	С	D	А	В
D	D	A	В	С

.

	Α	В	С	D
Α	Α	Α	А	А
В	Α	С		D
С	A		A	
D	A		A	С

- h) Verify in each case whether or not the set I defined below is an ideal in the ring R where;
 - i. R is the ring of rational numbers and I is the se of all non-negative rational numbers (2 marks)
 - ii. R is the ring of polynomials with integer coefficients and I is the set of polynomials in R whose leading coefficient is even (2 marks)

QUESTION TWO (20 MARKS)

a)	Let r by n.	be a positive integer. Define as and where denotes the	remainder of division of k
	i.	Show that is a group homomorphism	(2 marks)
	ii.	Find ker	(2 marks)
	iii.	Find the index	(2 marks)
	iv.	Find all the homomorphisms if any exists (2)	marks)
b)			
	i.	Construct addition and multiplication tables for R using	g operations as defined in (4 marks)
	ii.	Show that R is a commutative ring with unity.	(2 mars)
	iii.	Show that R a subring of	(2 marks)
	iv.	Does R have zero divisors?	(1 marks)
	v.	Is R a field? If yes illustrate each element with its inve	rse (3 mark)

QUESTION THREE (20 MARKS)

Construct the multiplication table for the group of symmetries of a square	
List all the subgroups of . Which of these are normal subgroups?	(20 marks)

QUESTION FOUR (20 MARKS)

- a) Let U be a fixed non-empty set and R be the set of subsets of U with addition and multiplication defined by and . Verify whether or not is a ring.
 (6 marks)
- b) Consider the ring and let I be the even coset in R i.e. r+R such that r is an even integer. Show that I is an ideal of R (7 marks)
- c) Show that in any ring the zero element is unique (2 marks)
- d) Let R be a ring such that every element satisfies the equation , prove that R is commutative (4 marks)

QUESTION FIVE (20 MARKS)

- a) Let G be a group in which every element has order at most 2. Show that G is abelian (3 marks)
- b) Show that in an abelian group G, the set of all elements with finite order in G is a subgroup of G. (5 marks)
- c) Let G be the set of eight elements given by with multiplication given by,,, .
 - i. Construct a multiplication table for the group. (6 marks)
 - ii.Consider the cyclic group group . list all the distinct cosets of H in G.Is H anormal subgroup of G?(6marks)