CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS
SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELORS OF SCIENCE
MATHEMATICS

MATH 204: ALGEBRAIC STRUCTURES

STREAMS: " As above"

TIME: 2HRS
DAY/DATE: \qquad
\qquad
INSTRUCTIONS:

- Answer Question ONE and any other TWO Questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE (30 MARKS)

a) Let *be a binary operation on the set of integers, defined by for every. Determine whether or not * is
i. Commutative
ii. Associative
iii. Find an identity element with respect to * if it exists
b) Let denote the set of all 2×2 matrices with integer coefficients, whose determinant is one. Verify whether or not is a group under matrix multiplication .
(5 marks)
c) Given a group G , define the centre of $\mathrm{G},(\mathrm{z}(\mathrm{G}))$ and show that it is a normal subgroup of G
(4 marks)
d) Prove that a group G is abelian, then the mapdefined by ,is a group homomorphism (2 marks)
e) Suppose a, b and c are elements of an integral domain D such that $a b=a c$ and. Prove that $b=c$
f) Verify whether or not the following statements are true about groups
i. A group of order 21 has a subgroup of order 10
ii. Every cyclic group is abelian
g) The addition and part of the multiplication table for the ring $\mathrm{R}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ are given below. Use the distributive laws to complete the multiplication table below
(4 marks)

+	A	B	C	D
A	A	A	C	D
B	B	C	D	A
C	C	D	A	B
D	D	A	B	C

.	A	B	C	D
A	A	A	A	A
B	A	C		D
C	A		A	
D	A		A	C

h) Verify in each case whether or not the set I defined below is an ideal in the ring R where;
i. R is the ring of rational numbers and I is the se of all non-negative rational numbers
(2 marks)
ii. $\quad \mathrm{R}$ is the ring of polynomials with integer coefficients and I is the set of polynomials in R whose leading coefficient is even

QUESTION TWO (20 MARKS)

a) Let n be a positive integer. Define as and where denotes the remainder of division of k by n.
i. Show that is a group homomorphism
ii. Find ker
(2 marks)
iii. Find the index
iv. Find all the homomorphisms if any exists
b) Consider the set.
i. Construct addition and multiplication tables for R using operations as defined in (4 marks)
ii. Show that R is a commutative ring with unity.
iii. Show that R a subring of
iv. Does R have zero divisors?
v. Is R a field? If yes illustrate each element with its inverse

QUESTION THREE (20 MARKS)

Construct the multiplication table for the group of symmetries of a square
List all the subgroups of. Which of these are normal subgroups?
(20 marks)

QUESTION FOUR (20 MARKS)

a) Let U be a fixed non-empty set and R be the set of subsets of U with addition and multiplication defined by and. Verify whether or not is a ring. (6 marks)
b) Consider the ring and let I be the even coset in R i.e. $r+R$ such that r is an even integer. Show that I is an ideal of R (7 marks)
c) Show that in any ring the zero element is unique
d) Let R be a ring such that every element satisfies the equation , prove that R is commutative

QUESTION FIVE (20 MARKS)

a) Let G be a group in which every element has order at most 2 . Show that G is abelian marks)
b) Show that in an abelian group G, the set of all elements with finite order in G is a subgroup of G.
c) Let G be the set of eight elements given by with multiplication given by,,, .
i. Construct a multiplication table for the group.
(6 marks)
ii. Consider the cyclic group group. list all the distinct cosets of H in G . Is H a normal subgroup of G ?
(6marks)

