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QUESTION ONE (30 MARKS)

a) Let *be a binary operation on the set of integers, defined by

for every . Determine whether or not * is

i. Commutative 

ii. Associative

iii. Find an identity element with respect to * if it exists   (4 marks)



b) Let denote the set of all 2x2 matrices with integer coefficients, whose determinant is one. 
Verify whether or not is a group under matrix multiplication .

(5 marks)

c) Given a group G, define the centre of G,(z(G)) and  show that it is a normal subgroup 
of G (4 marks)

d) Prove that a group G is abelian, then the mapdefined by  ,is a group homomorphism 
(2 marks)

e) Suppose a,b and c are elements of an integral domain D such that ab=ac and . Prove 
that  b=c (3 marks)

f) Verify whether or not the following statements are true about groups

i. A group of order 21 has a subgroup of order 10 (2 marks)

ii. Every cyclic group is abelian (2 marks)

g) The addition and part of the multiplication table for the ring R={a,b,c,d} are given 
below. Use the distributive laws to complete the multiplication table below                    
. (4 marks)

+ A B C D
A A A C D
B B C D A
C C D A B
D D A B C

. A B C D
A A A A A
B A C D
C A A
D A A C

h) Verify in each case whether or not the set I defined below is an ideal in the ring R 
where;

i. R is the ring of rational numbers  and I is the se of all non-negative rational 
numbers         (2 marks)

ii. R is the ring of polynomials  with integer coefficients and I is the set of 
polynomials in R whose leading coefficient is even (2 marks)

QUESTION TWO (20 MARKS)



a) Let n be a positive integer. Define as   and where denotes the remainder of division of k
by n.

i. Show that  is a group homomorphism (2 marks)

ii. Find ker (2 marks)

iii. Find the index (2 marks)

iv. Find all the homomorphisms if any exists (2 marks)

b) Consider the  set .

i. Construct addition and multiplication tables for R using operations as defined in 
 (4 marks)

ii. Show that R is a commutative ring with unity. (2 mars)

iii. Show that R a subring of  (2 marks)

iv. Does  R have zero divisors? (1 marks)

v. Is  R a field? If yes illustrate each element with its inverse ( 3 mark)

QUESTION THREE (20 MARKS)

Construct the multiplication table for the group of symmetries of a square 

List all the subgroups of . Which of these are normal subgroups?                            (20 marks)

QUESTION FOUR (20 MARKS)

a) Let U be a fixed non-empty set and R be the set of subsets of U with addition and 
multiplication defined by and . Verify whether or not is a ring.

(6 marks)

b) Consider the ring   and let I be the even coset in R i.e. r+R such that r is an even integer.
Show that I is an ideal of R (7 marks)

c) Show that in any ring the zero element is unique (2 marks)

d) Let  R be a ring such that every element satisfies the equation , prove that R is 
commutative (4 marks)

 QUESTION FIVE (20 MARKS)



a) Let G be a group in which every element has order at most 2. Show that G is abelian
 (3 

marks)

b) Show that in an abelian group G, the set of all elements with finite order in G is a 
subgroup of G. (5 marks)

c) Let G be the set of eight elements given by with multiplication given by,,, .

i. Construct a multiplication table for the group. (6 marks)

ii. Consider the cyclic group group  . list all the distinct cosets of H in G. Is H a 
normal subgroup of G? (6marks)


