UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF MASTER OF SCIENCE (CHEMISTRY)

CHEM 841: ADVANCED SEPARATION TECHNIQUES

STREAMS: MSC

TIME: 3 HOURS

2.30 P.M. – 5.30 P.M.

DAY/DATE: MONDAY 02/12/2019 INSTRUCTIONS: ANSWER ALL QUESTIONS

QUESTION ONE (20 MARKS)

(a) (i)	The zinc from a 2.50g sample of plant tissue is extracted into an aqueous solution	
	and diluted to 50ml in a voltametric flask. The sample is analyzed by	
	voltammetry with a limiting current of 0.583 mA. A 5.00mL a	
liquot of a	solution of zinc is added, resulting in a limiting current of	
1.35 mA.	Calculate the amount of zinc in the plant tissue, reporting your	
result as mg	zinc per gram of tissue	
	[1 mark]	
(ii)	A sample of pottery being considered for import is leached for 24 hours using	
	50.0ml of 4% acetic acid. A 40.00ml aliquot is transferred to an	
electrochemi	cal cell and 10.00ml of a 0.200 mM standard solution of is	
added. A stri	pping analysis of the solution yields peak currents of 1.81 for lead	
and 2.18 for	cadmium.	
	Analysis of a standard solution that is 0.0600 mM in and 0.0500mM in	
	gives peak currents of 2.39 and 2.71, respectively. Calculate the	
concentration of in the original leachate		
	[½ marks]	

 (iii) The following data were obtained for the reduction of an analyte using steadystate voltammetry (linear sweep voltammetry while stirring the solution).
 that this data is consisted with an electrochemical reversible reaction.

Applied potential	Current (MA)	
(v)		
- 0.385	0.0	
- 0.444	1.0	
- 0.465	2.0	
- 0.489	4.0	
- 0.511	6.0	
- 0.535	8.0	
- 0.556	9.0	
- 0.573	10.0	
- 0.596	10.0	

[1½ marks]

[11/2

(b)	(i)	Explain how you can analyze the monomer/dimer percentage in an aggregation		
		prone sample by SEC, if the protein is not visible under UV	[2	
mark	s]			
	$\langle \cdots \rangle$		11	

 (ii) Explain how you can identify one aggregate from the other contaminants directly using the SEC

[1 mark]

Show

(iii) Comment on the following statement:
"Flow rates have an effect on protein aggregation" [1¹/₂ marks]
(iv) Describe how the % of aggregation based on a SEC profile can be calculated

marks]

(v) Suggest guidelines which can be used to analyze protein complexes (for example to analyze the oligomeric of proteins) by SEC using total cell lysates
 instead of purified proteins

[½ mark]

(vi) Distinguish between aggregate formation and oligomer formation [½ mark]

	(vii)	Explai	n why there was a need for multidimensional chromatograph	y [3 marks]					
	(viii)	Comp	are capillary electrophoresis with high performance liquid ch	romatography					
				[2					
marks]									
(c)	(i)	Discus	ss with help of a suitable diagram electroosmotic mobility	$[2\frac{1}{2} \text{ marks}]$					
	(ii)	(I)	In a hydrodynamic injection, a pressure difference of						
			is applied for 25 to a 75cm long capillary tube with						
an internal diameter of 50 Assuming that the buffers viscosity is , Calculate the volume and length of sample injected in a nanc [1 mark]									
							(II)	Suppose that the limit of injection to be less than 0.2% of th	e capillary's

length using information from ii (I) above, calculate the maximum injection time for a hydrodynamic injection.

 $[1\frac{1}{2} \text{ marks}]$

QUESTION TWO (20 MARKS)

(a)	(i)	Consider A 50cm column with a plate height of 1.5mm that provides a theoretical
		plate number of 333 at a flow rate of 3ml min ⁻¹ , V_m =1.0 ml. calculate the
solute		retention time, retention volume, peak capacity of the column, zone
veloci	ty for	each solute and retardation factor for each solute when portion
ratio	is 1, 2, 5	and 10
	[1 mark]
	(ii)	Chromatograms with a standard test mixture were obtained using porous alumina;
		assume the total porosity is 0.75. the inlet pressure was 22.5 atm for all columns.
		Operating conditions and retention times are tabulated below. Calculate
capaci	ity	factor for each solute, the average linear velocity, plate height,
reduce	ed plate	height, reduced column length for each test column.
	[1 mark]

		Test substance retention time (tR), sec	Column 1	Column 2	Column 3		
		Nitrobenzene	538	182	91		
		Anisole	232	76	36		
		Biphenyl	168	56	26		
		Toluene	124	40	19		
		Dead or voidtime (tm)	104	34	16		
		Column length (Lcm)	50.0 3200	13.5 4450	9.0 5000		
		Number of theoretical plates (N) Diameter of the packing (dp), m	20	4430 10	6.5		
		Column bore (dc) cm	0.2	0.5	0.5		
			0.2	0.5	0.5		
(iii)	Sugg	est the courses of action which are available	e and penalties	which may a	ccrue for		
	decre	asing the plate height and yet increasing the	e resolution.		[1 mark]		
(b)	(i)	State four characteristics which make HP	LC exceptiona	al method for	the		
		separation and analysis of chemica	al mixtures co	mpared to the	e other		
		chromatographic technique	es				
		[1 mark]					
	(ii) Distinguish the following techniques: Reversed – phase chromatography (RPC),						
	Normal – phase chromatography (NPC), Non-aqueous reversed-phase						
	chromatography (NARP), size – exclusion chromatography (SEC)						
	[1 mark]						
	(iii)	Discuss the guidelines for selecting colum	nn conditions i	in liquid chro	matography		
		2 2		1			
Г1 <i></i>	1-1						
[1 mar	КJ						
	(iv)	Explain how the values of A, B, C terms	in Van Deemte	er equation ca	in be		
	determined experimentally						
[1	1.7	1 5					
[1 mar	КJ						
	(v)	Suggest ways which resolution in chroma	atography can	be improved	$[\frac{1}{2} \text{ mark}]$		
	(vi)	Outline three objectives which might be t	aken into acco	ount when dev	veloping or		
		improving a chromatographic pro-	cedure				

[½ mark]

[½ mark] State eight possible causes of peak distortion or tailing (vii)

(viii) Give three reasons why a chemist should understand the effects of the sample size on HPL separation before doing analysis. [¹/₂ mark]

(c)	Write short notes on the following in relation to liquid chromatography			
	(i)	Mobile – phase filtration	[½ mark]	
	(ii)	Mobile – phase degassing	[½ mark]	
	(iii)	Vacuum and in-line degassing	[1 mark]	
(d)	(i)	Discuss the sample size effects in chromatography	[1 mark]	
	(ii)	Briefly explain why it's necessary to carefully control the temperature of	luring	
		analysis with HPLC		
[1 ma	ark]			
	(iii)	State nine characteristics of an ideal HPLC detector	[1 mark]	
	(iv)	List four general techniques that are used in HPLC detection	[1 mark]	
(e)	(i)	Outline the advantages and disadvantages of Buck property detectors	[1 mark]	
	(ii) Give reasons for the use of silica in the form of either particle or monoliths as a			
		support for the production of HPLC packing's		
[1 ma	ark]			
	(iii)	Discuss the importance of column selectivity in liquid chromatography	[1 mark]	
(f)	(i)	List eight different interactions that can affect column selectivity	[1 mark]	
	(ii)	State and explain two possible problems with reverse phase chromatogr	aphy	
		which require attention during analysis		
[1 ma	ark]			
QUE	STION	THREE (20 MARKS)		
(a)	(i)	Why is it that, GC and HPLC are the most frequently used for the detec	tion of	
		pesticide residues and their metabolites in the environmental sar	nples. [2	
mark	s]			
	<pre>/•••</pre>			

 (ii) Give some of the drawbacks of these two techniques (GC and HPLC) as techniques for analyzing of pesticides in environmental samples. [2

marks]

(iii)	Outline the strength and weakness of capillary electrophoresis for analyzing
	pesticide's in environmental samples and how these limitations can be
	overcomed.

[2 marks]

(iv)	Describe briefly drawbacks of liquid phase microextraction (LPME) and so	lid
	phase microextraction (SPME) as a miniaturized techniques for extra	action
	synthetic pyrethroid insecticides (SPS) from water.	[2

of

marks]

(v) Describe the principle of dispersive liquid-liquid microextraction (DLLMME)

[2

[2

marks]

 (vi) Discuss how efficiency of dispersive liquid – liquid microextraction (DLME) of pyrethroids from aqueous media can be optimized. [2

marks]

(vii) Describe how the applicability of dispersive liquid – liquid microextraction (
 DLLME) for determining pyrethroids in the ground water samples can be

tested.

marks]

(viii) Explain how effect of ground water sample composition on the formance of the dispersive liquid – liquid microextraction can be checked.
 [2]

marks]

- (b) Discuss the pitfalls in the capillary electrophoresis analysis of aggregates of Beta
 Amyloid Peptides [1 mark]
- (c) (i) Compare ultra-high performance liquid chromatography (UHPLC) and High performance liquid chromatography

[1 mark]

(ii) State and explain different types of contaminants in water that affect HPLC results

[1 mark]