

INSTRUCTIONS

Answer All Questions

QUESTION ONE [20 MARKS]

(a) Write the names of the following coordination compounds (2 $1 / 2$ Marks)
(i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
(ii) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(iii) $\left[\mathrm{RhCl}_{3}\left(\mathrm{PMe}_{3}\right)_{3}\right]$
(iv) $\mathrm{K}_{2}\left[\mathrm{CrCO}(\mathrm{CN})_{s}\right]$
(v) $\left[\mathrm{Co}(\mathrm{en})_{3}\right] 3+$
(b) Write the formula for each of the following species
(i) tetrabromorhodate(II)
(ii) ammonium diaquabis(oxalato)nickelate(II)
(iii) hexaammineiron(III) nitrate (iv) potassium hexafluorocobaltate(III)
(v) hexammineiron(III) hexacyanochromate(III)
(c) Compare, with the aid of energy-level splitting diagrams, the stability of a tetragonally elongated d^{9} complex relative to that of an octahedral complex
(d) A solution of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is green and paramagnetic ($\mu=2.90 \mathrm{BM}$), whereas a solution of $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is colorless and diamagnetic. Give a qualitative explanation for these observations (2 Marks)
(e) Calculate the ligand field stability energy (LFSE) and the magnetic susceptibility of the following species
(i) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
(ii) $\left[\mathrm{CoCl}_{4}\right]^{2-}$
(iii) $\left[\mathrm{IrBr}_{4}\right]^{3-}$
(f) Set up a microstate table for a p^{2} configuration, determine the free ion terms and organize the resultant terms in order of increasing energy
(g) Explain the relative magnitudes of the crystal field splitting $\left(\Delta_{\mathrm{o}}\right)$ in the following pair of compounds
(i) $\left[\mathrm{CoF}_{6}\right]^{3-}\left(\Delta_{\mathrm{o}}=13,100 \mathrm{~cm}^{-1}\right)$ and $\left.\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}\left(\Delta_{\mathrm{o}}=22,900 \mathrm{~cm}^{-1}\right)$
(ii) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}\left(\Delta_{\mathrm{o}}=14,000 \mathrm{~cm}^{-1}\right)$ and $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}\left(\Delta_{\mathrm{o}}=32,000 \mathrm{~cm}^{-1}\right)$

QUESTION TWO [20 MARKS]

(a) Construct an Orgel diagram for $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and write the possible electronic transitions . (3 Marks)
(b) Estimate the values of Δ_{o} and the Racah parameter, B , for the $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ complex if it has absorption bands at $8,500,15,400$ and $26,000 \mathrm{~cm}^{-1}$
(5 Marks)
(c) Draw a well labelled molecular orbital energy diagram for σ-bonding in $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ complex and populate it with electrons
(d) Explain, with the aid of relevant molecular orbital diagrams, the arrangement of ligands in the spectrochemical series

QUESTION THREE [20 MARKS]

(a) Determine the ground state term for each of the following configurations
(i) d^{4} (low spin, O_{h}) (ii) d^{6} (high-spin, O_{h})
(b) Describe the four processes which can lead to the absorption of light by a transition metal complex
(2 Marks)
(c) The electronic spectrum of a complex $\left[\mathrm{TiL}_{6}\right]^{3+}(\mathrm{L}=$ neutral monodentate ligand) shows a weak $\left(\varepsilon=7 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$) absorption with a shoulder at $\lambda_{\max }=19,200 \mathrm{~cm}^{-1}$. Explain the origin of this absorption and the shoulder
(d) Discuss the charge transfer transitions of coordination compounds
(4 Marks)
(e) Determine the atomic orbitals that nickel can use for σ-bonding in the $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ complex and sketch the molecular orbital diagram
(8 Marks)

