CHEM 811

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF MASTER OF SCIENCE IN CHEMISTRY

CHEM 811: ADVANCED GROUP THEORY

STREAMS: MSC (CHEMISTRY)

TIME: 3 HOURS

DAY/DATE: THURSDAY 8/08/2019

2.30 P.M - 5.30 P.M.

INSTRUCTIONS

Answer All Questions

QUESTION ONE [20 MARKS]

(a) Determine the molecular point group for each of the following species; (6 marks)

- (i) XeO₄
- (ii) CCl₃⁺
- (iii) NOF
- (iv) I₃-

(b) (i) Generate a matrix representation of the C_{2h} point group using a set of x, y, and z coordinates as your basis. (2 marks)

(ii) Show that the matrix representation satisfy the requirements of a mathematical group

(2 marks)

(c) Consider the C_{3v} point group to which the NH₃ molecule belongs:

- (i) Construct the multiplication table for the C_{3v} point group (5 marks)
- (ii) Tabulate the non-trivial sub-groups of the C_{3v} point group (2 marks) (3 marks)
- (iii) Determine the classes of the C_{3v} point group

QUESTION TWO [20 MARKS]

(a) The AX₄ molecules can either be tetrahedral (T_d) or square planar (D_{4h}). Describe how group theoretical analysis of vibrational (IR and Raman) spectroscopy of an AX₄ molecule can be used to establish its molecular geometry (12 marks)

CHEM 811

(b) Determine the atomic orbitals of the indium atom that can used to form σ hybrid orbitals for the InCl₅²⁻ (C_{4v}) ion. (6 marks)

QUESTION THREE [20 MARKS]

Consider the $[PtCl_4]^{2-1}$ ion which belong to the D_{4h} point group:

- (a) Determine the atomic orbitals on platinum that are used to form σ -bonds with chlorine atoms in the [PtCl₄]²-ion. (12 marks)
- (b) Determine the SALCs that are required to form Pt-Cl σ -bonds in the [PtCl₄]²-ion. (4 marks)

(c) Sketch the molecular orbital diagram for the $[PtCl_4]^{2-1}$ ion.	(4 marks)