PHYS 414

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN PHYSICS AND BACHELOR OF EDUCATION SCIENCE

PHYS 414: NUCLEAR AND ATOMIC PHYSICS

STREAMS: BSC (PHYS), BED (SCI)

TIME: 2 HOURS

11.30 A.M. – 1.30 P.M.

DAY/DATE: TUESDAY 04/12/2018

INSTRUCTIONS:

• Answer question ONE and any other TWO questions.

QUESTION ONE (30 MARKS)

(a)	Define the terms nuclear fusion and nuclear fission.	(2 marks)
(b)	The electron in the hydrogen atom makes transition from the $n = 4$ to the grant Find the wavelength and frequency of the emitted photon. ($R_H = 1.097 \times 1000$	ground state. (10 ⁷ M ⁻¹). (4 marks)
(c)	Show that $E_n = \frac{-m_e k_e^2 e^4}{2h^2} \left(\frac{1}{n^2}\right) n = 1,2,3 \dots$	(4 marks)
(d)	State Pauli's Exclusion principle.	(2 marks)
(e)	Write electronic configuration of $z = 21$ utilizing exclusion principle.	(3 marks)
(f)	Estimate the energy of the characteristic X-ray emitted from a tungsten target when an electron drops from a N shell (n=4) to a vacancy in the K shell (n = 1). $Z = 74$. (5 marks)	
(g)	Draw an energy level diagram for hydrogen and at least show four series. (4 marks)	
(h)	The nuclear reaction ${}^{1}_{0}n + {}^{10}_{5}B \rightarrow {}^{7}_{3}Li + {}^{4}_{2}He$ is observed to occur even when very slow moving neutrons (Mn = 1.0087u) strike a boron atom at rest. For a particular reaction in which KE=0, the helium (M_{He} =4.0026u) is observed to have a speed of 9.30*106 m/s.	

Determine

(i)	The KE of the lithium ($M_{Li} = 7.0160$)	(4 marks)
(ii)	The Q value of the reaction	(2 marks)

QUESTION TWO (20 MARKS)

- A "clever" technician decides to heat some water for his coffee with an x-ray machine. If (a) the machine produces 10 rad/s, how long will it take to raise the temperature of a cup of water by 50° C? Ignore heat losses during this time? (6 marks)
- In a certain experiment, $0.024'' \mu Ci \ of \frac{32}{15}P$ is injected into a medium containing a culture (b) of bacteria. After 2 hours the cells are washed and a detector that is 70% efficient (counts 70% of emitted rays) records 1440 counts per minute from all the cells. What percentage of the original was taken up by the cells? (3 marks)

Show that half-life of a radioactive material can be expressed as $t_{\frac{1}{2}} = \frac{0.693}{\lambda}$ where (c) $\lambda = \text{decay constant}$ (3 marks)

- (iii) Why is the quantity of energy different in the two (1 mark)
- An isotope of an element radon has half-life of 8 days, a sample of radon originally (d) contains $8.2*10^{16}$ atoms, take one day to be 86×10^3 seconds, calculate

(i)	The number of radon atoms remaining after 32 days.	(2 marks)
(ii)	The rate of decay of the radon sample after 32 days.	(2 marks)

(3 marks)

- (e) Define the following LASER
 - (i)
 - (ii) MASER (iii) Phosphorescence
- **QUESTION THREE (20 MARKS)**

(a)	State any four useful applications of radioactivity	(4 marks)
(b)	Calculate the binding energy in alpha particle (Helium-4) nucleus in MeV Mass of neutron = 1.008665u Mass of helium nucleus = 4.001508u Mass of a photon = 1.007276u	. Take (3 marks)
(c)	State and explain briefly FIVE types of stationary power reactors	(5 marks)
(d)	State Neil Bohr's atomic model postulates	(3 marks)
(e)	State five Hazard of radioactivity	(5 marks)

QUESTION FOUR

- (a) Natural gold has only one isotope, ${}^{197}_{79}Au$. If gold is bombard with slow neutron, \bar{e} particles are emitted.
 - (i) Write the appropriate reaction equation.
 - (ii) Calculate the maximum energy of the emitted beta particles. The mass of ${}^{198}_{80}Hg$ is 197.966 75 u. (4 marks)
- (b) Sketch a graph showing the average binding energy per nucleon as a function of mass number A. (4 marks)
- (c) Estimate the temperature required for a deuterium-tritium fusion (d-t) to occur Rd=1.5 fm and rt=1.7 fm. (4 marks)
- (d) An animal bone fragment found in archaeological site has a carbon mass of 400g. It registers an activity of 20 decays/s. What is the age of the bone? (Ratio of C-14:C-12 when the animal was alive was $1.3*10^{-12}$) (4 marks)
- (e) Draw a well labeled diagram of a nuclear reactor. (4 marks)

QUESTION FIVE

(a) Calculate the energy in MeV liberated when helium is produced.

(i)	by fusing two neutrons and two protons	(3 marks)
	$m_p = 1.007825 u$, $M_n = 1.008665 u$	
(ii)	by fusing two deuterium nuclei ${}_{1}^{2}H = 2.014102$	(3 marks)
(iii)	Why the difference?	(2 marks)

- (b) Calculate the total binding energy and the average binging energy per nucleon for ${}_{26}^{56}Fe$ the most common stable isotope of Iron (p=1.007825u, n=1.008665u and Fe=55.9349u (5 marks)
- (c) Compare at least THREE properties of alpha, beta and gamma decays. (3 marks)
- (d) Describe the kind of decay particle in the following nuclear equations A, B, C and D
 - (i) ${}^{1}_{0}n + {}^{238}_{92}U \rightarrow {}^{239}_{92}U + A$
 - (ii) ${}^{2}_{1}H + {}^{14}_{7}N \rightarrow {}^{12}_{6}C + B$
 - (iii) $^{212}_{83}Bi \rightarrow ^{208}_{81}TI + C$
 - (iv) ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow D$ (4 marks)