CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE
 PHYS 342: ELECTRICITY AND MAGNETISM II

STREAMS:
TIME: 2 HOURS
DAY/DATE: TUESDAY 04/12/2018 8.30 A.M. - 10.30 A.M.

INSTRUCTIONS:

- Answer question one and any other two questions

QUESTION ONE (30MARKS)

1 a) Differentiate between electric potential and electric field intensity
[2marks]
b) Derive an expression for electric potential V at a point r from a point charge Q
[4marks]
c) Show that work done in moving a test charge Q_{t} around a closed path in the field of a point charge Q is zero
d) Distinguish between a conductor and a dielectric
e) Calculate the potential at a point P which is 0.15 m from a dipole formed by charges $\mathrm{Q}_{1}=1.6 \times 10^{9} \mathrm{C}$ and $\mathrm{Q}_{2}=-1.6 \times 10^{-9} \mathrm{C}$, given that P makes an angle of 30° from the centre of the dipole. Assume the charge separation distance is 2 mm .
f) Derive Gauss's law in the form
$\int_{s} E . d \mathfrak{a}=\frac{Q}{\varepsilon o}$
g) Write down Maxwell's equations of electromagnetism in their general differential form in a vacuum
[4marks]
h) Explain the reason as to why charges only reside on the surface of a conductor
[4marks]

QUESTION TWO (20MARKS)

2a) Show that potential due to the dipoles at a point P is given by $\mathrm{V}_{\mathrm{p}}=\frac{Q a \cos \varphi}{4 \pi \epsilon \pi r 2}$
[8marks]

b) From the equation for potential due to a dipole at point P , show that the electric field component in the x - direction is given by
$\mathrm{E}_{\mathrm{x}}=\frac{3 P \sin \theta \cos \theta}{4 \pi \varepsilon o}\left(\frac{1}{r 3}\right)$
c) State any three applications of Gauss's law

QUESTION THREE (20MARKS)

3a) Derive the Maxwell's electromagnetic equation
$\nabla \times E=-\frac{\delta B}{\delta t}$
b) Derive an expression for electric field \mathbf{E} at a point P outside a sphere of radius R and uniform volume change density ρ
c) Calculate the electric field at a point 0.04 m from the surface of a charged sphere of radius 0.05 m and volume charge density $4 \times 10^{-7} \mathrm{C} / \mathrm{m}^{3}$
[4marks]

QUESTION FOUR (20MARKS)

4a) Staring from Gauss's law in a vacuum derive an expression for the Gauss's law in dielectric
[6marks]
b) Show that the volume change density is given by
$\rho_{b}=-\nabla . P$
[6marks]
c) Derive the equation of continuity
[8marks]

QUESTION FIVE (20MARKS)

5a) A circuit contains a capacitor with capacitance $4.5 \mu \mathrm{~F}$ and an inductor of inductance 2.5 mH . The capacitor is fully charged using a 12 V battery and then connected to the circuit. Find
i) the angular frequency of the circuit
ii) the total energy in the circuit
iii) charge on the capacitor after the time $t=3 \mathrm{sec}$
b) For a series arrangement of R, L and C circuit and given that $R=3 \times 10^{5} \Omega, L=10^{-3} H$ and $\mathrm{C}=60 \mathrm{PF}$. Calculate:
i. The total current in each arm when a voltage of 20 V r.m.s at a frequency of 0.1 MHZ is applied
ii. The phase of the total current drawn from the generator.
c) Explain the significance of resistor in an LRC circuit

