CHUKA

UNIVERSITY EXAMINATIONS

RESIT/SPECIAL EXAMINATION

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION

MATH 411: DIFFERENTIATE GEOMETRY

STREAMS: B.ED
TIME: 2 HOURS
DAY/DATE: FRIDAY 01/09/2023
11.30 A.M - 1.30 P.M.

INSTRUCTIONS

Answer QuestionONE and any other TWO Questions

QUESTION ONE (30 MARKS)

a) Find the volume of the parallelepiped formed by the vectors $\vec{a}=(2,1,1), \vec{b}=$

$$
(1,-1,2) \text { and } \vec{c}=(0,-2,3)
$$

b) Determine the cartesian equation of the curve $\vec{r}(t)=\left(\cos ^{2} t, \sin ^{2} t\right)$
c) Show that a particle whose motion is given as $\vec{r}=\left(\frac{1}{3}(1+t)^{3 / 2}, \frac{1}{3}(1-t)^{3 / 2}, \frac{t}{\sqrt{2}}\right)$ has a unit speed
d) Calculate the length of the curve $x=2 t, y=4 \sin 3 t$ and $z=4 \cos 3 t ; 0 \leq t \leq 2 \pi$
e) Evaluate $\int_{0}^{2}\left(6 t^{2} i-4 t j+3 k\right) d t$
f) Show that if $\vec{u}(t)=g(t) \hat{i}+h(t) \hat{j}$ then $\frac{d[f(t) \vec{u}(t)]}{d t}=f^{\prime}(t) \vec{u}(t)+f(t) \vec{u}^{\prime}(t)(5$ marks $)$
g) Given that $\vec{r}(t)=t^{2} \hat{i}+\sqrt{5-t^{2}} \hat{j}$ where t is time in seconds, find the velocity, acceleration and speed

QUESTION TWO (20 MARKS)

a) Find the equation of the osculating plane to the given curve $\vec{r}=\left(t^{3}, t^{2}, t\right)$ at $\mathrm{t}=2$
b) The parametric equation of a curve is $x=3 \cos 2 t, y=3 \sin 2 t, z=6 t$. find the length of the arc from 0 to π
c) Prove the Frenet-Serret formula for a space curve $\vec{r}=f(t)$
i) $\quad \frac{d \bar{T}}{d s}=k \bar{N}$
ii) $\quad \frac{d \bar{B}}{d s}=\bar{\iota} \bar{N}$ where $\bar{T}, \bar{N}, \bar{B}, \bar{k}$ and $\bar{\imath}$ have the usual meaning

QUESTION THREE (20 MARKS)

a) Find the tangent and normal line passing through $\mathrm{P}(\mathrm{x}, \mathrm{y})$ on the curve
$\vec{r}(t)=(2 \sin t-\sin 2 t, 2 \cos t-\cos 2 t)$ at the point corresponding to $t=\frac{\pi}{4}$
(11 marks)
b) If $\vec{r}=\left(\frac{4}{5} \cos t, 1-\sin t, \frac{-3}{2} \cos t\right.$ find the curvature k

QUESTION FOUR (20 MARKS)

a) Find the arc length of the spiral $\vec{r}(t)=\left(e^{k t} \operatorname{cost}, e^{k t} \sin t\right)$
b) A parallelogram is determined by the vectors $\overrightarrow{P Q}$ and $\overrightarrow{P \mathrm{R}}$. Given that $\overrightarrow{P \mathrm{Q}}=(4,3,-2)$ and $\overrightarrow{P \mathrm{R}}=(5,5,1)$, find;
i) The area of the parallelogram
ii) The angle between $\overrightarrow{P Q}$ and $\overrightarrow{P R}$
iii) Show that $\vec{r}(s)=\left(\frac{1}{3}(1+t)^{3 / 2}, \frac{1}{3}(1-t)^{3 / 2}, \frac{3}{\sqrt{3}}\right)$ is a unit speed curve and find its SerretFrenet apparatus
(7 marks)

QUESTION FIVE (20 MARKS)

A space curve C is given by $\bar{r}=5 \sin t \hat{\imath}+5 \cos t \hat{\jmath}+12 t \hat{k}$, calculate the following at a point P on the curve where $t=\frac{\pi}{2}$
a) Unit tangent (T)
b) The curvature (k) and radius of curvature (ϱ)
c) The unit normal (\bar{N})
d) The Binomial (\bar{B})
e) The torsion τ and the radius of the torsion δ

