CHUKA UNIVERSITY

UNIVERSITY EXAMINATIONS 2023.

FIRST YEAR EXAMINATIONS FOR THE AWARD OF BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONICS ENGINEERING.

MATH 407: FOURIER ANALYSIS

TIME: 2 HOURS

6mks

2mks

INSTRUCTIONS

Answer question one and any other two questions

Adhere to the instructions on the answer booklet.

QUESTION ONE Compulsory.

a. Obtain a_0 , a_n and b_n for the Fourier series of the function defined as

$$f(x) = \begin{cases} 0, -\pi < x < 0 \\ x, \quad 0 < x < \pi \end{cases}$$

- b. Find Fourier Sine transform of $f(x) = 2e^{-3x} + 3e^{-2x}$ 5mks
- **c.** Find Fourier cosine transform of $f(x) = \begin{cases} 1, 0 < x < a \\ 0, x > a \end{cases}$ 4mks

d. Find f(x) if its finite Fourier sine transform is given by $F_s(p) = \frac{1 - \cos p\pi}{p^2 \pi^2}$ for p = 1, 2, 3.... and $0 < x < \pi$

- e. If F(s) is the complex Fourier transform of f(x), show that $F[f(ax) = \frac{1}{a}F(\frac{s}{a})]$
- f. Using Parseval's identity for sine transforms, obtain $f(x) = \int_{0}^{\infty} \frac{x}{(x^2+1)^2}$ given that $f(x) = \int_{0}^{\infty} \frac{x}{(x^2+1)^2}$

and
$$F_s(s) = \frac{\pi}{2}e^{-s}$$
 5mks

g. Determine the exponential form of the Fourier series for the function defined by $f(t) = e^{2t}$ when -1 < t < 1 and has period 2 5mks

QUESTION TWO

a. A periodic function of period 4 is defined as $f(x) = \begin{cases} x, 0 \le x \le 2 \\ -x, -2 \le x \le 0 \end{cases}$, Obtain a_0 , a_n and b_n 6mks 5mks

b. The temperature u(x,t) in a semi-infinite rod $0 < x < \infty$ is determined by the differential equation $u_t(x,t) = 2u_{XX}$ subject to conditions:

u = 0, when t = 0, $x \ge 0$ $u_t = -k$, when x = 0, t > 0

Obtain the equation for the temperature u(x,t) at any point along the rod 10mks

c. Find the function f(x) if its Fourier sine transform is given by e^{-as} 4mks

QUESTION THREE

a. Using Fourier transform, solve the equation $u_t(x,t) = ku_{xx}$, $0 < x < \infty$, t > 0 subject to the conditions

$$u(0,t) = 0, \ t > 0,$$

$$u(x,0) = e^{-x}, \ x > 0,$$

$$u \text{ and } u_x \text{ tends to zero as } x \to \pm \infty$$

10mks

b. Solve $u_t = u_{XX}$, 0 < x < 6, t > 0 under the given conditions $u_X(0,t) = 0$, $u_X(6,t) = 0$, u(x,0) = 2xby Fourier transforms. 9mks

QUESTION FOUR

- a. A periodic function f(t) of period 2 is defined by $f(t) = \begin{cases} 3t, 0 < t < 1 \\ 3, 1 < t < 2 \end{cases}$, Obtain a_0, a_n and b_n 6mks
- b. Find the Fourier series expansion of the periodic function of period 2π given as $f(x) = x^2, -\pi \le x \le \pi$

Hence, find the sum of the series
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2}$$
... 8mks

c. Find the Fourier sine integral for $f(x) = e^{-\beta x}$, $\beta > 0$ 6mks

QUESTION FIVE

a. Solve $U_t = kU_{xx}$ for $x \ge 0$, $t \ge 0$, under the given conditions $U = U_0$ at x = 0, t > 0, with initial conditions $U(x,0) = 0, x \ge 0$ by Fourier transforms. 8mks

- b. Find the finite Fourier sine transform of f(x) = 1 in $(0, \pi)$. Use the inversion theorem and find the Fourier series for f(x) = 1 in $(0, \pi)$. Hence show that $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots = \frac{\pi}{4}$ 6mks
- c. Find the Fourier cosine transform of $e^{-a^2x^2}$ and hence evaluate the Fourier sine transform of $xe^{-a^2x^2}$ 6mks