CHUKA UNIVERSITY

UNIVERSITY EXAMINATIONS 2023.

FIRST YEAR EXAMINATIONS FOR THE AWARD OF BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONICS ENGINEERING.

MATH 407: FOURIER ANALYSIS
TIME: 2 HOURS

INSTRUCTIONS

Answer question one and any other two questions

Adhere to the instructions on the answer booklet.

QUESTION ONE Compulsory.

a. Obtain a_{0}, a_{n} and b_{n} for the Fourier series of the function defined as

6 mks

$$
f(x)= \begin{cases}0, & -\pi<x<0 \\ x, & 0<x<\pi\end{cases}
$$

b. Find Fourier Sine transform of $f(x)=2 e^{-3 x}+3 e^{-2 x}$ 5mks
c. Find Fourier cosine transform of $f(x)=\left\{\begin{array}{l}1,0<x<a \\ 0, x>a\end{array} \quad 4 \mathrm{mks}\right.$
d. Find $f(x)$ if its finite Fourier sine transform is given by $F_{s}(p)=\frac{1-\cos p \pi}{p^{2} \pi^{2}} \quad$ for $p=1,2,3 \ldots$. and $0<x<\pi$

2mks
e. If $F(s)$ is the complex Fourier transform of $f(x)$, show that $F\left[f(a x)=\frac{1}{a} F\left(\frac{s}{a}\right)\right.$
f. Using Parseval's identity for sine transforms, obtain $f(x)=\int_{0}^{\infty} \frac{x}{\left(x^{2}+1\right)^{2}}$ given that $f(x)=\int_{0}^{\infty} \frac{x}{\left(x^{2}+1\right)^{2}}$
and $F_{s}(s)=\frac{\pi}{2} e^{-s}$
5mks
g. Determine the exponential form of the Fourier series for the function defined by $f(t)=e^{2 t}$ when $-1<t<1$ and has period 2

5 mks

QUESTION TWO

a. A periodic function of period 4 is defined as $f(x)=\left\{\begin{array}{c}x, 0 \leq x \leq 2 \\ -x,-2 \leq x \leq 0\end{array}\right.$,

Obtain a_{0}, a_{n} and b_{n}
6 mks
b. The temperature $u(x, t)$ in a semi-infinite $\operatorname{rod} 0<x<\infty$ is determined by the differential equation $u_{t}(x, t)=2 u_{x x}$ subject to conditions:
$u=0$, when $t=0, x \geq 0$
$u_{t}=-k$, when $x=0, t>0$
Obtain the equation for the temperature $u(x, t)$ at any point along the rod 10 mks
c. Find the function $\mathrm{f}(\mathrm{x})$ if its Fourier sine transform is given by $e^{-a s} \quad 4 \mathrm{mks}$

QUESTION THREE

a. Using Fourier transform, solve the equation $u_{t}(x, t)=k u_{x x}, 0<x<\infty, t>0$ subject to the conditions

$$
\begin{aligned}
& u(0, t)=0, t>0, \\
& \quad u(x, 0)=e^{-x}, x>0,
\end{aligned}
$$

u and u_{x} tends to zero as $x \rightarrow \pm \infty$
10 mks
b. Solve $u_{t}=u_{x x}, 0<x<6, t>0$ under the given conditions $u_{x}(0, t)=0, \quad u_{x}(6, t)=0, u(x, 0)=2 x$ by Fourier transforms.

QUESTION FOUR

a. A periodic function $\mathrm{f}(\mathrm{t})$ of period 2 is defined by $f(t)=\left\{\begin{array}{l}3 t, 0<t<1 \\ 3,1<t<2\end{array}\right.$, Obtain a_{0}, a_{n} and $b_{n} \quad 6 \mathrm{mks}$
b. Find the Fourier series expansion of the periodic function of period 2π given as

$$
f(x)=x^{2},-\pi \leq x \leq \pi
$$

Hence, find the sum of the series $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}} \ldots$
c. Find the Fourier sine integral for $f(x)=e^{-\beta x}, \quad \beta>0 \quad 6 \mathrm{mks}$

QUESTION FIVE

a. Solve $U_{t}=k U_{x x}$ for $x \geq 0, t \geq 0$, under the given conditions $U=U_{0}$ at $x=0, t>0$, with initial conditions $U(x, 0)=0, x \geq 0$ by Fourier transforms.

8mks
b. Find the finite Fourier sine transform of $f(x)=1$ in $(0, \pi)$. Use the inversion theorem and find the Fourier series for $\mathrm{f}(\mathrm{x})=1$ in $(0, \pi)$. Hence show that $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots=\frac{\pi}{4} \quad 6 \mathrm{mks}$
c. Find the Fourier cosine transform of $e^{-a^{2} x^{2}}$ and hence evaluate the Fourier sine transform of $x e^{-a^{2} x^{2}}$ 6 mks

