CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS <u>FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF</u> <u>SCIENCE (MATHEMATICS)</u> <u>MATH 406: FIELD THEORY</u>

INSTRUCTIONS:

- Answer QUESTION ONE AND ANY OTHER 2 questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write on the question paper
- This is a **closed book exam**, No reference materials are allowed in the examination room
- There will be **No** use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE (30 MARKS)

- a) Let $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2}\}$. Show that it is a subfield of \mathbb{R} . (5 marks)
- b) Differentiate with examples between an algebraic and transcendental element over a field F (4 marks)
- c) (i)Show that $\sqrt{2} + \sqrt{3}$ is algebraic over \mathbb{Q}
 - (ii) Find its degree of its extension over \mathbb{Q} (6 marks)
- d) Find a root of $x^4 + 4$ over \mathbb{Z}_5 and factorize it fully in \mathbb{Z}_5 (5 marks)
- e) Let E be a finite extension of degree n over a finite field F. Prove that if F has q elements
 the E has qⁿ elements (5 marks)
- f) Construct a finite field GF(4) and the multiplication table of its nonzero elements (5 marks)

QUESTION TWO (20 MARKS)

- a) Use the Einstein irreducibility criterion to show that 29x⁵ + 42x⁴ + 39x³ 12x² + 15x 6 is irreducible over Z[x]
 (5 marks)
- b) By solving for the irreducible monic polynomial f(x) ∈ Q(x) such that ∝ is a root of f(x), find the degree of ∝= √√5 2 over Q.
 (4 marks)
- c) Let *E* be an algebraic extension of field *F* and let α, β ∈ *E*, explain what is meant by elements α and β being the conjugates over the field *F* and find all the conjugates of √1 + √3 over
 Q. (6 marks)
- d) Find the degree and basis for $\mathbb{Q}(\sqrt[3]{2}, \sqrt{5})$. (5 marks)

QUESTION THREE (20 MARKS)

a) Show that the field $F = Q(i, -i, \sqrt{5}, -\sqrt{5})$ is a simple extension given by $F' = Q(i + \sqrt{5})$ (*i. e F = F'*) (5 marks)

b) By considering an irreducible polynomial f(x) over \mathbb{Z}_2 of degree 3 construct *GF*(8). (5 marks)

- c) Show that a field *F* is algebraically closed if every non-zero polynomial in f(x) factors into linear factors. (5 marks)
- d) Prove that a finite extension over a field F is an algebraic extension over F (5 marks)

QUESTION FOUR (20 MARKS)

- a) Find the splitting field of $x^4 9x^2 + 14$. (5 marks)
- b) Determine whether the polynomial $x^4 3x + 4$ is irreducible in \mathbb{Q} by first checking if it has a rational root. Can we conclude its irreducible? (6 marks)
- c) Show that $4x^3 + x^2 x + 3$ is irreducible in $\mathbb{Q}[x]$ (5 marks)
- d) By solving for the irreducible monic polynomial $f(x) \in \mathbb{Q}[x]$ such that \propto is a root of f(x), find the degree of $\propto = \sqrt{\sqrt[3]{2} + 3}$ over \mathbb{Q} . (5 marks)

QUESTION FIVE (20 MARKS)

- a) Show that $x^2 x 1$ is solvable by radicals (4 marks)
- b) (i)Explain the set of all automorphisms of [Q(√2, √3)/ Q]
 (ii)Draw and explain the corresponding subgroup and subfield diagrams (15 marks)