CHUKA

UNIVERSITY EXAMINATIONS
FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS)

MATH 406: FIELD THEORY

INSTRUCTIONS:

- Answer QUESTION 0NE AND ANY OTHER 2 questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE (30 MARKS)

a) Let $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2}\}$. Show that it is a subfield of \mathbb{R}.
b) Differentiate with examples between an algebraic and transcendental element over a field F
c) (i)Show that $\sqrt{2}+\sqrt{3}$ is algebraic over \mathbb{Q}
(ii) Find its degree of its extension over \mathbb{Q}
d) Find a root of $x^{4}+4$ over \mathbb{Z}_{5} and factorize it fully in \mathbb{Z}_{5}
(6 marks) (5 marks)
e) Let E be a finite extension of degree n over a finite field F . Prove that if F has q elements the E has q^{n} elements (5 marks)
f) Construct a finite field $\mathrm{GF}(4)$ and the multliplication table of its nonzero elements (5 marks)

QUESTION TWO (20 MARKS)

a) Use the Einstein irreducibility criterion to show that $29 x^{5}+42 x^{4}+39 x^{3}-12 x^{2}+15 x-$ 6 is irreducible over $\mathrm{Z}[\mathrm{x}]$
b) By solving for the irreducible monic polynomial $f(x) \in Q(x)$ such that α is a root of $f(x)$, find the degree of $\propto=\sqrt{\sqrt{5}-2}$ over \mathbb{Q}.
(4 marks)
c) Let E be an algebraic extension of field F and let $\alpha, \beta \in E$, explain what is meant by elements α and β being the conjugates over the field F and find all the conjugates of $\sqrt{1+\sqrt{3}}$ over \mathbb{Q}.
(6 marks)
d) Find the degree and basis for $\mathbb{Q}(\sqrt[3]{2}, \sqrt{5})$.

QUESTION THREE (20 MARKS)

a) Show that the field $F=Q\left(i,-i, \sqrt{5},-\sqrt{5}\right.$ is a simple extension given by $F^{\prime}=Q(i+$ $\sqrt{5)}\left(\right.$ i.e $\left.F=F^{\prime}\right)$
b) By considering an irreducible polynomial $f(x)$ over \mathbb{Z}_{2} of degree 3 construct $G F(8)$.
c) Show that a field F is algebraically closed if every non-zero polynomial in $f(x)$ factors into linear factors.
d) Prove that a finite extension over a field F is an algebraic extension over F (5 marks)

QUESTION FOUR (20 MARKS)

a) Find the splitting field of $x^{4}-9 x^{2}+14$.
b) Determine whether the polynomial $x^{4}-3 x+4$ is irreducible in \mathbb{Q} by first checking if it has a rational root. Can we conclude its irreducible? marks)
c) Show that $4 x^{3}+x^{2}-x+3$ is irreducible in $\mathbb{Q}[x]$
d) By solving for the irreducible monic polynomial $f(x) \in \mathbb{Q}[x]$ such that α is a root of $f(x)$, find the degree of $\propto=\sqrt{\sqrt[3]{2+3}}$ over \mathbb{Q}.

QUESTION FIVE (20 MARKS)

a) Show that $x^{2}-x-1$ is solvable by radicals (4 marks)
b) (i)Explain the set of all automorphisms of $[\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}]$
(ii)Draw and explain the corresponding subgroup and subfield diagrams (15 marks)

