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QUESTION ONE (30 MARKS) 

a) Let ℚ(√2)={𝑎 + 𝑏√2}. Show that it is a subfield of ℝ.   (5 marks) 

b) Differentiate with examples between an algebraic and transcendental element over a field 

F          (4 marks) 

c) (i)Show that √2+ √3is algebraic over ℚ   

(ii) Find its degree of its extension over ℚ    (6 marks) 

d) Find a root of  𝑥4 + 4 𝑜𝑣𝑒𝑟 ℤ5 and factorize it fully in ℤ5  (5 marks) 

e) Let E be a finite extension of degree n over a finite field F. Prove that if F has q elements 

the E has 𝑞𝑛 elements      (5 marks) 

f) Construct a finite field GF(4) and the multliplication table of its nonzero elements  

(5 marks) 

 



QUESTION TWO (20 MARKS) 

a) Use the Einstein irreducibility criterion to show that 29𝑥5 + 42𝑥4 + 39𝑥3 − 12𝑥2 + 15𝑥 −

6 is irreducible over Z[x]               (5 marks) 

b) By solving for the irreducible monic polynomial 𝑓(𝑥) ∈ 𝑄(𝑥) such that ∝ is a root of 𝑓(𝑥), 

find the degree of ∝= √√5 − 2 over ℚ.                                                                  (4 marks) 

c) Let  𝐸 be an algebraic extension of field 𝐹 and let 𝛼, 𝛽 ∈ 𝐸, explain what is meant by elements  

𝛼 and 𝛽 being the conjugates over the field 𝐹 and find all the conjugates of  √1 + √3 over 

ℚ.                                                                                                                            (6 marks)    

d) Find the degree and basis for ℚ(√2
3

, √5).                                                      (5 marks) 

 

QUESTION THREE (20 MARKS) 

 

a) Show that the field 𝐹 = 𝑄(𝑖, −𝑖, √5,− √5 is a simple extension given by 𝐹′ = 𝑄(𝑖 +

√5)  (𝑖. 𝑒 𝐹 = 𝐹′)                                       (5 marks) 

b) By considering an irreducible polynomial   𝑓(𝑥) over  ℤ2 of degree 3 construct 𝐺𝐹(8).  

                                                                                                                                (5 marks)    

c) Show that a field 𝐹 is algebraically closed if  every non-zero polynomial in 𝑓(𝑥) 

factors into linear factors.              (5 marks) 

d) Prove that a finite extension over a field F is an algebraic extension over F (5 marks)                                                                    

 

 

 

QUESTION FOUR (20 MARKS) 

a) Find the splitting field of 𝑥4 − 9𝑥2 + 14 .                                                                          (5 marks) 

b)  Determine whether the polynomial 𝑥4 − 3𝑥 + 4  is irreducible in ℚ by first checking if 

it has a rational root. Can we conclude its irreducible?    (6 

marks) 

c) Show that 4𝑥3 + 𝑥2 − 𝑥 + 3 is irreducible in ℚ[𝑥]    (5 marks) 

d) By solving for the irreducible monic polynomial 𝑓(𝑥) ∈ ℚ[𝑥] such that ∝ is a root of 𝑓(𝑥), 

find the degree of ∝= √∛2 + 3 over ℚ.                                                                  (5 marks) 

 



QUESTION FIVE (20 MARKS) 

a) Show that 𝑥2 − 𝑥 − 1 is solvable by radicals     (4 marks) 

b) (i)Explain  the set of all automorphisms of [ℚ(√2, √3)/ ℚ]         

(ii)Draw and explain the corresponding subgroup and subfield  diagrams (15 marks)       

 


