UNIVERSITY

UNIVERSITY EXAMINATIONS

FOURTH YEAR EXAMINATION FOR THE DEGREE OF BACHELORS OF EDUCATION SCIENCE/ARTS; BACHELORS OF SCIENCE MATHEMATICS

MATH 403: MEASURE THEORY

STREAMS: ````as above```` Y4S2

TIME: 2HRS

INSTRUCTIONS:

Answer question ONE and TWO other questions

QUESTION ONE: (30 MARKS)

a)	Prove that a sigma algebra is closed under countable intersections.	(4 mks)
b)	Prove the following properties of an outer measure μ^*	

i.
$$\mu^*(\phi) = 0$$
 (2 mks)

ii.
$$\mu^*(\{x\}) = 0$$
 (2 mks)

iii. If $A \subseteq B$ and A is measurable of finite measure, then $\mu^*(B - A) = \mu^*(B) - \mu^*(A)$

c) Let (X, x, μ) be a measure space and $A \in x$, define $\tau(E) = \mu(E \cap A)$ for every $E \in x$. Show that τ is a measure.

d) Prove that if
$$\mu^*(A) = 0$$
, then $\mu^*(A \cup B) = \mu^*(B)$

e) Define a simple function. Hence find the integral of the simple function defined by

$$f(x) = \begin{cases} 1 & if \quad x \in C \cap \{rationals\} \\ 2 & if \quad x \in C \cap \{irrationals\} \\ 3 & if \quad x \in [01] - C \end{cases}$$

Where C is the cantor set

(3mks)

(4 mks)

(4mks) (3 mks)

f) Let f and g be non-negative extended real valued measurable functions both defined on sets E and F such that $E \subseteq F$, both measurable sets, show that

i.
$$\int_{E} f d\mu \leq \int_{E} g d\mu \quad \text{if } f \leq g \tag{3mks}$$

CHUKA

ii.
$$\int_{E} f d\mu \le \int_{F} f d\mu$$
(3 mks)

QUESTION TWO: (20 MARKS)

- a) Given that the sets A and B are Lebesgue measurable sets, prove that
 - i. $A \cup B$ is Lebesgue measurable
 - ii. $A \cap B$ is Lebesgue measurable (6 mks)
- b) Let X be a non empty set and $\{x_i\}$ be a collection of sigma algebras of subsets of X. prove that $\cap x_i$ is a sigma algebra (7 mks)
- c) Let X= \mathbb{R} , define $\mathscr{B}=\{B \subseteq \mathbb{R}: B \text{ is countable or } \mathbb{R} B \text{ is countable}\}$. Prove that \mathscr{B} is a sigma algebra (7 mks)

QUESTION THREE: (20 MARKS)

- a) Let (X, \mathfrak{x}) be a measurable space and $f: X \to \mathbb{R}^*$ be a given function. Show that the following statements are equivalent
 - i. $\{x \in X: f(x) \ge a\} = f^{-1}[a, \infty] \in \mathfrak{x} \text{ for all } a \in \mathbb{R}^*$
 - ii. $\{x \in X: f(x) < a\} = f^{-1}[-\infty, a] \in \mathfrak{x} \text{ for all } a \in \mathbb{R}^*$

iii.
$$\{x \in X: f(x) \le a\} = f^{-1}[-\infty, a] \in \mathfrak{x} \text{ for all } a \in \mathbb{R}^*$$

iv. $\{x \in X: f(x) > a\} = f^{-1}(a, \infty] \in \mathfrak{x} \text{ for all } a \in \mathbb{R}^*$ (8 mks)

c) Let (X, \mathfrak{x}) be a measurable space and $f: X \to \mathbb{R}^*$ be \mathfrak{x} measurable. The prove that

(i) f² = f²(x) ∀x ∈ X is also x measurable.
(ii) |f| = |f(x)| ∀x ∈ X is also x measurable
Using an appropriate counter example show that the converse of (i) is not necessarily true (8 mks)

d) Suppose f and g are extended real valued functions defined on a measurable set E. Show that if f is Lebesgue measurable on E, and g=f measure almost everywhere, then g is Lebesgue measurable

(6 mks)

QUESTION FOUR: (20 MARKS)

a)	State without prove the monotone convergence theorem (M.C.T)	(2 mks)
b)	(i)Explain a uniform convergence sequence of functions	(2 mks)
	(ii) Show that M.C.T does not apply in the sequence $f_n(x) = \frac{1}{n} \chi_{[0,n]}$ for $n \in N$. Explain	n your
	answer.	(4 mks)
	(iii) Verify whether or not Fatous lemma applies for (ii) above	(2 mks)
C	c) Show that the set of measurable sets form a sigma algebra (1	0 mks)

QUESTION FIVE: (20 MARKS)

a)	Show that the collection of open intervals in \mathbb{R} do not form a sigma algebra	(2 mks)	
b)	(i) By using the properties of outer measure, show that the unit interval [0,1] is not coun	is not countable.	
		(2mks)	
	(ii) Prove or disapprove that every set that has outer measure zero is countable	(2 mks)	
	(iii) Let A be the set of irrational numbers in the unit interval. Prove that $\mu^*(A) = 1$	(3 mks)	
c)	Define a Lebesgue non-measurable set. Prove that if E is non-Lebesque measurable sub	oset of \mathbb{R} ,	
	then there exists a subset A of E such that $0 < \mathcal{M}^*[A] < \infty$	(5 mks)	
d)	Define a ''totally unlucky number'' to be a number that does not have the digit 7 in its	y number" to be a number that does not have the digit 7 in its decimal	
	expansion. Calculate the measure of all such numbers in the unit interval [0,1]	(6 mks)	