

UNIVERSITY EXAMINATIONS
FOURTH YEAR EXAMINATION FOR THE DEGREE OF BACHELORS OF EDUCATION SCIENCE/ARTS; BACHELORS OF SCIENCE GENERAL, BACHELORS OF ARTS GENERAL

MATH 304: COMPLEX ANALYSIS
STREAMS: "`’as above"" Y3S2
TIME: 2HRS

INSTRUCTIONS:

- Answer question ONE and TWO other questions
- Any applicable theorem applied should be clearly stated

OUESTION ONE: (30 MARKS)

a) Determine the three roots of the complex number $z=-1+i$ (3 marks)
b) Compute the $\lim _{z \rightarrow 2+i} \frac{z^{2}-4 z+5}{z^{3}-z-10 i}$
c) Find all the points (if any) in the complex plane where the function $f(z)=x^{3}+y+i\left(y^{2}-x\right)$ is differentiable. Determine whether $f(z)$ is analytic at these points.
d) Solve the equation $e^{2 z-1}=1$
e) Evaluate the following complex integrals
i. $\quad \oint \frac{1}{\left(z^{2}+1\right)^{2}} d z \quad$ inside the region bounded by the circle $|z|=4 \quad$ (4 marks)
ii. $\quad \oint \frac{1}{z^{2}} d z$ inside the region bounded by the ellipse $(x-2)^{2}+\frac{1}{4}\left((y-5)^{2}=1\right.$ marks)
f) Find the sum of the series $\sum_{k=1}^{\infty} \frac{(1+2 i)^{k}}{5^{k}}$ (Hint: it is a geometric series) (5 marks)
g) Expand $f(z)=\frac{1}{1-z}$ in Taylor's series about $z=2 i$ (4 marks)

QUESTION TWO (20 MARKS)

a) Evaluate $\left(\frac{1+i}{\sqrt{2}}\right)^{1337}$ and write your answer in the form $x+i y$
b) Verify that the function $u(x, y)=e^{-x} \sin y$ is harmonic and find its harmonic conjugate. Write the analytic function $f(z)=u+i v$
(6 marks)
c) Differentiate between poles, removable singularities and essential singularity using a n appropriate example in each case.
(6 marks)
d) Express cot z and $\operatorname{cosec} \mathrm{z}$ in terms of $e^{i z}$ and $e^{-i z}$, hence show that $\cos e c^{2} z-\cot ^{2} z=1$

QUESTION THREE(20 MARKS)

a) Express $z=\frac{\sqrt{1+x^{2}}+i x}{x-i \sqrt{1+x^{2}}}$ in the form $a+i b$, where a and b are real numbers hence Find the complex number z^{3}.
(5 marks)
b) Evaluate the integral $\oint_{\gamma} f(z) d z$ where $f(z)=\frac{1}{(z-1)^{2}(2 z-5)}$ and γ is the contour defined by
i. The rectangle defined by $\mathrm{x}=0, \mathrm{x}=2, \mathrm{y}=-1$ and $\mathrm{y}=1$
ii. The circle $|z-1|=2$
c) State without proof the residue theorem and use it to evaluate the integrals
i. $\quad \oint_{c}{ }^{\frac{1}{z}} d z$ where c is $|z-2|=3$
ii. $\quad \oint_{C} \frac{5 z^{2}-z+2}{z^{2}(z+1)(z+2 i)} d z \quad \mathrm{C} ;|z-i|=1.5$

QUESTION FOUR (20 MARKS)

a) Find all solutions to the equation $\sin z=5$
b) Find the set of points in which the function $f(z)=\frac{\bar{z}}{|z|^{2}}$ is analytic
c) From the polar form of the Cauchy-Riemann equations
$\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}$
$\frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}$, derive the corresponding Laplace equation in polar form
(ii)Show that the function $v(x, y)=\frac{x}{x^{2}+y^{2}}$ is harmonic and find an analytic function

$$
\begin{equation*}
f(z)=u(x, y)+i v(x, y) \tag{5marks}
\end{equation*}
$$

QUESTION FIVE (20 MARKS)

a) Find the region of convergence of the series $\sum_{n=0}^{\infty} \frac{(z+4)^{n}}{(n+5)^{4} 8^{n+1}}$
b) Expand $f(z)=\frac{1}{z^{2}-z} \quad$ in Laurent series valid for $1<|z-2|<2$
c) Evaluate the integral $\oint e^{\frac{3}{z}} d z$ inside the unit circle ; $|z|=1$

