CHUKA

UNIVERSITY EXAMINATIONS

RESIT/SPECIAL EXAMINATION

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE
MATH 205: ELEMENTS OF SET THEORY
STREAMS: "AS ABOVE"
TIME: 2 HOURS

DAY/DATE: TUESDAY 29/08/2023
11.30 A.M - 1.30 P.M.

INSTRUCTIONS:

- Answer Question ONE and any other TWO Questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE (30 MARKS)

a) Differentiate the following terms and give examples
i. Linearly ordered set and a partially ordered set
ii. Countable and uncountable set
b) Given the sets $A_{n}=\{n+1, n+2, n+3 \ldots\}$, where n is a positive integer evaluate
i. $\bigcup_{n=3}^{10} A_{n}$ and $\bigcap_{n=1}^{10} A_{n}$
ii. $\quad \bigcup_{n} A_{n}$ and $\bigcap_{n} A_{n}$
c) Find the domain of the function $f: R \rightarrow R$ defined by $f(x)=\sqrt{9-x^{2}} \quad$ (2 marks)
d) Consider the $\operatorname{set} A=\left\{4+(-1)^{n} \frac{n-1}{n}\right\}$ where n is a positive integer
i. Find the supremum and the infimum of A (4 marks)
ii. Find all the limit points of A
e) With an appropriate example, show that a bounded sequence is not necessarily convergent
(2 marks)
f) Prove that the set of integers is countable
(3marks)
g) Prove that if the limit of a sequence exists, then it is unique
(3marks)
h) State the Axiom of choice

OUESTION TWO (20 MARKS)

a) Let n be a positive integer. Suppose a function L is defined recursively as

$$
L(a, b)=\left\{\begin{array}{lr}
0 & \text { if } a<b \\
L(a-b, b) & a \geq b
\end{array}\right.
$$

Find
i. $\mathrm{L}(2,3) \quad$ (1 mark)
ii. $\mathrm{L}(14,3)$ (2 marks)
iii. What does L do? (2 marks
iv. Find L(5861,7)
(2marks
b) Prove the De'Morgans law $\left(\mathrm{U}_{k} A_{k}\right)^{c}=\bigcap_{k} A_{k}^{c}$ of sets (5 marks)
c) Let $A_{m}=\left\{x \in \mathbb{R}: 0 \leq x \leq 1-\frac{1}{k}\right\}$, determine and explain the following sets as intervals
i. $\quad A_{3} \cap A_{7}$ (2 marks)
ii. $\quad A_{3} \cup A_{7}$ (2 marks)
iii. $\bigcup_{m} A_{m}$
iv. $\bigcap_{m} A_{m}$
(2 marks)

QUESTION THREE (20 MARKS)

a) Prerequisites in a college are partial ordering of available classes. Denote A is a requisite of B by $A \prec B$. Let C be the ordered set of mathematics courses and their prerequisite as shown below.

Class	Math							
	101	201	250	251	340	341	450	500
Prerequisite	None	Math 101	Math 101	Math 250	Math 201	Math 340	Math 201,250	Math 250,251
		101						

Required:
i. Draw an Hasse diagram for the partial ordering of these classes
(4 marks)
ii. Find all the minimal and maximal elements of these classes
iii. Determine the first and last element if they exist.
(2 marks)
b) Let A and B be sets. Show that the product order on $A \times B$ defined by $(a, b) \prec(c, d)$ if $a \leq c$ and $b \leq d$ is a partial order on $A \times B$ (6 marks)
c) Let λ be an ordinal number. Prove that $\lambda+1$ is the immediate successor of λ (5 marks)

QUESTION FOUR (20 MARKS)

a) Given the functions $r: x \rightarrow \frac{1}{2} x-4$ and $r \circ s: x \rightarrow \frac{9 x-1}{2 x}$, find $s(x)$. (4 marks)
b) Find if the following sets are bounded or not and if bounded find the sups and infs
(i) $S_{1}=\{x \in \mathbb{R}: a \leq x<b\}$
(ii) $S_{2}=\left\{1+(-1)^{n} \frac{1}{n}: n \in \mathbf{N}:\right\}$
(2mks)
(iii) $S_{2}=\left\{1+(-1)^{n} \cdot n: n \in \mathbf{N}:\right\}$
(2mks)
c) Define a countable set. Hence illustrate that the set of even integers is countable
d) Prove that the intervals $[0,1] \operatorname{and}(0,1]$ are equivalent.
(4 marks)

