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ABSTRACT  
A move towards industrialization is an active ingredient in achieving sustainable economic development owing to the 

derived benefits of the creation of employment opportunities and enhanced international trade. Through its big four 

agenda launched on December 12, 2017, Kenya aims to foster the manufacturing sector. One of the industrial- agenda is 

reducing the costs of industrial inputs. Thus, an accurate predictive model that can be used to gauge the cost of 

manufacturing inputs ought to be developed. The current study compared the pertinence of two Holt-Winter Exponential 

Smoothing (HWES) techniques in forecasting Kenya's industrial inputs price data. Unlike simple moving average, where 

past values are weighted equally, exponential functions assign exponentially decaying weights, over time. The study 

used secondary data on Kenya's monthly industrial inputs price index from January 1980 to June 2018 extracted from 

the OECD website. The data had 450 observations and was analyzed using R software. The findings indicated that a 

hybrid of both the additive and multiplicative HWES model efficiently captures the nonlinearity or seasonality of 

industrial inputs price index series. Specifically, the “optimal” model was a specification of the multiplicative error, 

additive trend, and multiplicative seasonality (“MAM”) with a performance accuracy of 2.3% in terms Mean Absolute 

Percentage Error (MAPE) in making 24 months step-ahead forecasts. The model outperformed the purely additive 

(2.44%) or multiplicative HWES model (2.55%). The estimated smoothing of alpha, beta and gamma were; 0.9647, 

0.1378, and 0.0004, respectively. The prediction future prices movement is beneficial to producers, consumers and 

policymakers. The 24-period forecast of the industrial inputs the price index indicates a falling trend, and indication that 

the industrial agenda shows some prospects in the reduction of the cost of inputs.  
Keywords: Industrial Inputs Price Index, Holt-Winter Exponential Smoothing, Additive Model, Multiplicative Model, 
Forecasting, Kenya 

 
INTRODUCTION  
Industrialization is the process by which an economy is transformed from primarily agricultural to one based on the 

manufacturing of goods. It is an essential ingredient in achieving sustainable economic growth and development through the 

creation of employment opportunities, enhancing international trade and assure maximum utilization of a country's resources. 

In, Kenya, Agriculture, industry and the service sectors contributed 15.7%, 21.6% and 62.7% to GDP growth rate of 5.1% in 

2017 (AfDB, 2017). Empirical studies have revealed that the manufacturing sector has the highest employment multiplier 

effect as compared to other sectors. Bivens (2003) showed that every 100 jobs in the manufacturing sector support 291 jobs in 

other sectors of the economy, compared to 118 in the health sector, and 154 jobs in the service sector. According to Biven 

(2003), manufacturing production demands for intermediate goods and capital equipment than other sectors. Thus, layoffs in 

the manufacturing sector have a higher spillover effect on indirect employment loss than in other sectors. According to Berger 

et al. (2017), developing economies can create significant jobs in the non-tradable sectors by shifting towards skill-intensive 

production. With the world share of manufacturing value added (MVA) as a percentage of GDP is 16%, the Middle East & 

North Africa and sub-Saharan Africa had 14% and 10% respectively (World Bank, 2018). The African Economic Outlook 

(2018) report indicated that Eastern African countries like Kenya, Uganda, Tanzania and Rwanda had respective growth in 

MVA of 4.8%, 5.1%, 8.9%, and 9%. Since most African countries lag in terms of MVA, Africa has been on the move to 

unlock and enhance its manufacturing potential with the most recent launch of the Africans Continental Free Trade Area 

(AfCFTA) in March 2018. It should create a single continental market for   
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goods and services as well as a customs union with free movement of goods through the removal of tariffs (AU, 2020). 

Likewise, Kenya recently launched its Big 4 Agenda on December 12, 2017, comprising of four pillars; enhancing 

manufacturing, affordable housing, food and nutrition security, and universal healthcare coverage (The Presidency, 2020). 

Additionally, the manufacturing sector is an economic pillar under the Vision 2030 long-term development launched in 2008 

(Kenya Vision 2030) aiming to transform Kenya to a middle-income country by 2030. Kenya's priority sectors under the 

manufacturing pillar are textile apparel/cotton, leather, agro-processing (tea, dairy & meat), fish processing, construction 

materials, oil, Mining and gas iron and steel and information communication and Technology (KAM, 2017).  
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Even though Africa is a cost-effective location for manufacturers due to its high population size, which is a source of cheap 

labour (Tate et al., 2014), most manufacturing companies in Kenya face challenges of the increased cost of inputs in their 

production processes (KAM, 2018). Moreover, Kenya’s share of the manufacturing sector to GDP has been declining from 

11.8% in 2011 to 8.4% in 2017. According to KAM (2018) priority agenda, it is an expectation that MVA will increase from 

8.4% in 2017 to 15% by 2022. One of the first pillar under enhancing manufacturing is competitiveness and level playing field 

with one of its agendas being to lower the cost of imported industrial inputs (KAM, 2018). Therefore, it is imperative to 

understand how the cost of industrial inputs has been evolving. According to Köppelová & Jindrová (2019), quantitative 

information knowledge is essential when making policy decisions. The approach relies on and on data analysis, interpretation, 

and forecasting tools. Thus, time series analysis has become indispensable in the modern world as time-series data is 

continually rising (Hassani & Mahmoudvand, 2018). Classical models widely used to forecast the economic and financial time 

series, such as unemployment and stock indices, are based on restrictive assumptions of normality, linearity and the 

stationarity of the observed data (Hassani & Mahmoudvand, 2018). However, most time-series data do not meet these 

assumptions. In as much as non- linear models such as cointegration models, Autoregressive Integrated (AR), Moving 

Average (MA), Autoregressive Integrated Moving Average (ARIMA) and Seasonal Autoregressive Integrated Moving 

Average (SARIMA) models have been developed, the data has to be stationary. As well, most economic and financial time 

series are characterized by non-stationarity caused by exogenous shocks such as; technological change, policy changes, and 

changes in consumer preference. Such shocks have rendered parametric models inaccurate in modelling and forecasting 

(Hassani & Thomakos, 2010). Violation of parametric assumptions in classical time series modelling calls for data 

transformations, e.g., by differencing or log transformation. According to Hassani and Mahmoudvand (2018), such data 

transformation results in a loss of information. Non-parametric methods can produce a better fit for the data with a higher 

accuracy performance than parametric methods. 

 
As a non-parametric method, the parametric assumptions relating to normality, stationarity, and linearity do not apply when 

modelling with Exponential Smoothing Techniques (EST). It is used to isolate trends and seasonality from irregular variation 

(Chan et al., 2011). The technique eliminates the high variations in the signal while maintaining the significant patterns of 

series (Muhamad & Mohamed Din, 2015). The Holt Winter and Autoregressive Integrated Moving Average (ARIMA) class of 

models use past values to obtain future values (Hanzak, 2008). However, the two models have some disparity. First, the 

ARIMA model is capable of describing stationary data by differencing method (Wei, 2006). Secondly, the ARIMA model 

expresses a series in terms of both lagged values and the error values of the original series, unlike EST which only uses lagged 

values. While ARIMA class models and Holt Winter Exponential Smoothing (HWES) model integrates both Seasonal and 

trend data patterns into the model to enhance its performance Syafei, et al. (2019), HWES does not consider stationarity of 

data. Instead, HWES employs iterative steps and past observations are weighted to obtain predictive values (Omane- Adjepong 

et al., 2013). Moreover, unlike the simple moving average models where lagged observations are weighted equally, 

exponential functions allocate gradually decreasing weights over time (Ostertagová & Ostertag, 2011). The EST has been 

applied in univariate time series modelling and forecasting of air quality (Nimesh et al., 2014), population (Nazim & 

Afthanorhan, 2014), agrometeorological time series, consisting of air temperature, wind speed (Murat et al., 2016), monthly 

rainfall (Dhamodharavadhani & Rathipriya (2019), students’ admission (Himawan & Silitonga, 2019), Chicken Business 

Profit (Sudirman, 2020). Based on model evaluation criterion such as Mean Absolute Percentage Error (MAPE), the HWES 

model produced better forecasts compared with single EST, double EST and ARIMA class models. Therefore, the current 

study compared the pertinence of two HWES; the additive and multiplicative HWES technique in fitting and forecasting 

Kenya’s industrial inputs prices index. 

 

DATA AND METHODS  
The current study employed HWES to fit and forecast Kenya's industrial inputs price index data. The price index under 

consideration aggregates the data for both metals and non-metals (Agricultural) industrial inputs. Metals Price Index is 

calculated based on the prices of raw materials including Copper, Aluminum, Iron Ore, Tin, Nickel, Zinc, Lead, and 

Uranium while Agricultural Raw Materials Index, Timber, Cotton, Wool, Rubber, and Hides. No sampling technique is 

employed in this study since it deals with a univariate time series data. Therefore, secondary data set of Kenya’s 

monthly industrial inputs price index data, over 25 years, from June 1993 to June 2018 (450 observations) obtained from 

the Organization for Economic Co-operation and Development (OECD) website (https://www.oecd.org/). The period is 

considered appropriate as it encompasses the pre- and post-industrial agenda towards industrialization in Kenya under 

the Vision 2030 long-term development launched in 2008. Additionally, this period is inclusive of the global crisis in 

2008, which causes structural changes in time series data, making the  
 
 
 
 
 
 

7th International Research Conference Proceedings 3rd – 4th Dec 2020 pg. 587-597 

http://www.oecd.org/)


time series data non-stationary (Hassani & Mahmoudvand, 2018). Thus, the model demonstrates its capability of 
capturing such structural breaks in a time series data. 

 

Holt-Winters Exponential Smoothing Technique  
Exponential Smoothing techniques were first suggested by Brown (1956) and expanded by Holt (1957). Triple exponential smoothing was 
first suggested by Holt's student, Peter Winters in 1960. It is suitable for time-series data that exhibit both seasonality and trend (Singh et al., 
2019. The HWES technique comprises of a forecast equation with three smoothing equations. The first is at level; , followed by trend , and 
lastly for the seasonal component denoted by , with respective smoothing parameters , , and . The Holt-Winters method has two versions, 
additive and multiplicative, the use of which depends on the characteristics of the particular time series. 

 

Additive Model  
The additive method is preferred when the seasonal variations are roughly constant through the series. That is when the seasonal or trend component is not proportional to the level of the series. That is, 
we can overlay or add the components together to reconstruct the original series. If Y is the price index, the component form for the additive method is: ^+ ℎ| 

=  + ℎ   +   +ℎ−  ( +1) 

(2.1) 

Where; m denotes the frequency of the series. In this case, m is taken as 12 since the data is monthly and k is an integer such that the estimates of the seasonal indices used for forecasting come from the end year of the 
sample data. The level equation shows a weighted average between seasonally adjusted observation −   −   and non- seasonal forecast   −1 +  

  −1 for time for . Seasonal equation shows a weighted average between current seasonal index, −   −1 −   −1 and the seasonal index of the same season last year (h periods ago). The specification of this model takes the form “AAA” denoting 

the additive error, additive trend, and additive seasonality. 

 

Multiplicative Model  
The multiplicative model is preferred when the seasonal variations are changing proportionally to the level of the series. 
With this model, the seasonal component is expressed in relative terms (percentages), and the series is seasonally 
adjusted by dividing through by the seasonal component. Annually, the sum of the seasonal components is 

approximately m. Generally, the additive model is represented as follows: 

=  ∗  ∗ 
(2.2) 

 
The component form for the multiplicative method is: ^+ℎ | = ( + ℎ   )   +ℎ−  ( +1) . The multiplicative seasonality model takes the form “MMM”. That is, with a multiplicative error, trend, and seasonality. 

 

Data Analysis  
Data was be analyzed using the R Statistical Software (R Core Team, 2020). The analysis involved presenting the 
general descriptive statistics of the series, decomposition of the time series properties of the series using technique and 
eventually fitting the model.  
The procedure of obtaining both the Holt-Winters Triple Exponential Smoothing Additive and Multiplicative models are 
outlined below; 

 
Step 1: Determining the initial values: For the stationary (S), trend (T) and seasonally (I) components using equations 
the following equations; 
1              

=  ,   = 
 +( 1+ 2+ 

⋯ 
+  ) 
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Step 2: Choosing the Values for the Smoothing Parameters.  
Unlike in single exponential smoothing, TES usually has more than one smoothing parameter. The initial parameters are α, β and γ, ranging between 0 to 1. While the choice of smoothing parameters can be subjective, it 

can be estimated by minimizing the sum of squared errors (SSE) (Hyndman & Athanasopoulos, 2018). The errors are obtained as = − |  −1, = 1, . . . , , that is, the one-step-ahead within-sample forecast errors.  
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The optimum parameters and initial values of the model minimizes the SSE obtained as;  
   
 2  

 = ∑(   −  |  −1) = ∑  2 
(2.6) 

=1 =1  
Unlike in linear regression analysis, which uses a formula to calculate the regression coefficients minimizing the SSE 

directly, it requires a non-linear minimization problem necessitating the use of an optimization tool (Scales, 1985). In 

this study, the determination of the smoothing parameter (α) is based on trial and error. To determine the value of α, the 
series are smoothed based on guessed values from 0.1 to 1 by 0.1 as used by Muhamad & Mohamed Din (2015). The 

best value of α to be used is the one that minimizes the SSE. According to Lazim (2013), a smaller value of α suits a 
stable time series data while a larger α suits a rapidly changing series. 

 
Step 3: Calculation of TES data stationary with additive and multiplicative method can be performed using equations as 
used by Siregar, et al. (2017). 

Additive:=  (  −  − 1) + (1 −  )   −1 +    −1) 

Multiplicative:    = 

 

+(1− )( +    )  

  

  −   
  −1   −1 

  
Where; is the observations of the industrial inputs index series ; smoothing factor, 0 < < 1  
; are the observations of the smoothed data 
  −1; Trend factor 

; initial value index 
 
Step 4: Estimation of the trend data using equations below: 
Additive: = ( −   −1) + (1 −  )   −1) Multiplicative: 

= ( +   −1) + (1 −  )(   −1 

Where; is the trend smoothing factor, 0 < < 1 

 
Step 5: Estimation of the initial value I is then done using the equation below; 
Additive: = ( − ) + (1 − )   −  ) 

Multiplicative: = + (1 − ) 

    −   

  

Where; is the seasonal smoothing factor, 0 < < 1 

 
Step 6: After obtaining all the parameter values, then m step ahead forecasts is estimated using the equation 2.7 
(Himawan & Silitong, 2019). 

+  =(  +)  −  + ) 

(2.7) 

Step 7: The RMSE is then computed based on the fitted values and recorded. Step two to sx, is repeated until a final 
model which minimizes the SSE (Equation 3.12) is obtained. The model minimizing the prediction error rate is chosen 
and used for forecasting (Köppelová & Jindrová, 2019). 

 

Step 8: The best model is then used to make m-step-ahead predictions using equation 2.7. 

 

Models Evaluation Criterion  
Several performance metrics have been used to evaluate the performance of models based on error measurement (Lazim, 

2013). The prediction errors are the differences between the actual and forecasted values. This study employed the Mean 

Absolute Percentage Error (MAPE), which estimates the square root of the averaged squared prediction errors, to 

compare the performance of SSA and the two TES additive and multiplicative. The MAPE measures the average 

absolute error across the periods, expressed aa s percentage of the observation values (Jana, 2016). The MAPE is 

calculated using the following equation (Himawan & Silitong, 2019).  
 
     

 1 −  
= ∑ | 

 

|×100 (2.8) 
 

    
 =1    

 
The best model for adoption is the one that minimizes the value of MAPE based on the 24 months step-ahead 
forecasts covering the period between July, 2018, to July 2022.  

5  
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RESULTS AND DISCUSSION  
The current study looks into the applicability of SSA to monthly industrial inputs price index data from January 1980 to 

June 2017. The time series plot in figure 1 presents an oscillatory change in the price index in the 1990s followed by a 

sharp rise from January, 20002. The impact of the recession of 2008/2009 attributed to the banking crisis is evident due 

to a sharp fall in the industrial inputs price index within this period. This shows that the price index data is elastic and 

can respond to global economic shocks. Such exogenous shocks make data non-stationary with seasonal fluctuation. 

Thus, the use of a filtering technique such as SSA could provide better results since it can filter, extract, and model such 

signals (Silva, Hassani, and Heravi 2018). In general, it is observable that the monthly industrial inputs price index 

series depicts seasonality and trend pattern. Therefore, the associated harmonic components should be extracted and 

modelled Holt and Winters Triple Exponential smoothing.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 27: Monthly Industrial Inputs Price Index Data (1982M1–2017M6) 

 

Descriptive Statistics  
As shown, in table 1, the least price index was 50.92 recorded in September, 1989, whilst the highest was 217.07, 

recorded in April, 2014. The priced index between January, 1982 to June, 2019 averaged 98.20 with a standard 

deviation of 38.40. The measures of dispersion indicate that the data is non-symmetrical to the mean suggesting that the 

seasonality skews the distribution of the data (Table 1). However, since HWES is a non-parametric method which is da-

a adaptive, the distribution of the data is not of the utmost importance. 

 

Table 89: Descriptive Statistics 

 Min Mean SD Max Skewness Kurtosis 

 Price Index50.92 98.20 38.48 217.07 1.03 0.06 

 

Decomposing the Data  
Most time-series data represent an amalgam response of physically interpretable signal of concern ana d certain amount 
of noise (Rekapalli & Tiwari, 2015). A time series can portray trend, seasonal or irregular component.  

 Seasonal component refers to variations in a given series concerning the calendar cycles. For example, the 
demand for ice cream might increase during summer and decrease during winter. Typically, seasonality is the 
tendency of time-series data to exhibit a behaviour that repeats itself after some fixed interval; say after 
quarterly, semi-annually or monthly periods.

 Trend component is the overall pattern of the series which can either be decreasing or increasing over time.

 Cycle component comprises of the decreasing or increasing patterns that are not seasonal.
 The error or residual component is the portion of the series that is not explained by seasonality, cyclical, or 

trend components. 
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Decomposing the time series is the process of extracting or separating these components. The current study employed 

the “Seasonal and Trend decomposition using Loess” (STL) decomposition method to decompose the series into its 

constituents. Here, Loess is a method for estimating nonlinear relationships which estimate the seasonal component of a 

series using smoothing technique and corrects the initial series by removing seasonality (Cleveland et al., 1990). STL is 

more advantageous over the classical, SEATS (Seasonal Extraction in ARIMA Time Series) and X11 decomposition 

techniques (Dagum and Bianconcini 2016). 

 
(i) The rate of change in the seasonal component and the smoothness of the trend-cycle can be customized.  
(ii) In case of the presence of outliers in the data set, robust decomposition can be adopted to minimize the 

impact of influential observations on the estimates of the trend-cycle and seasonal components.  
(iii) 11 specifically handles high varying frequency data such as weekly, intraday series where trading day variation 

and holiday effects occur 

 

By applying STL decomposition to the price index series, figure 8 depicts the original time series (observed) and its 

three additive components; the estimated trend, seasonal, and the irregular component. The fitted trend component is 
oscillatory with both increasing and decreasing trend. A steady increase occurred between 200p to 2009 followed by a 

sharp rise in 2010.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 28: Robust Decomposition of the Industrial Inputs Price Index Series Using STL 

 
Since the series has both seasonality and trend, forecasts can be made using triple exponential smoothing (Holt- Winters 
exponential smoothing method). The technique estimates the level, slope and seasonal component at the current time point 
(Holt, 1957 and Winters, 1960). The Holt-Winters seasonal method comprises the forecast equation and three smoothing 
equations representing the estimates of the level ( ) one for the slope of the trend component ( ), and another for the seasonal 
component ( ) with corresponding smoothing parameters; alpha ( ), beta ( ), and gamma ( ). All the parameter values range 
between 0 and 1. Values closer to 0 indicates that relatively little weight is placed on the most recent observations when 
making forecasts of future values. The resultant components can be described using an additive model or multiplicative. 

 
Figure 4.3 shows the plot the original time series with the forecasted values using the HWT filtering technique. A 
preliminary evaluation of this technique shows that it can well fit the price index series since the plot depicts that the in-
sample forecasts (red line) are congruent with the observed values (black line).  
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Figure 29: Ho-t Winters Triple Exponential Smoothing (Auto-plot from "HoltWinters" function in R) 
 
To determine the best predictive model, different model specifications are fitted and their accuracy performance 

evaluated using RMSE. Table 4.2 depicts the accuracy of the two pure additive and multiplicative models with four 

hybrid model specifications. The predictive accuracy of a purely additive model is better (2.44% based on the MAPE) 

than a purely multiplicative model (2.55% based on the MAPE). The smaller value of for the purely additive model 

relative to the multiplicative model implies that the seasonal component in the later changes more with time. The 

increasing size of the seasonal parameter ( ) for the multiplicative model elicits that the model is more suitable to capture 

frequently changing seasonality in the series than the additive model. 

 

Conversely, the smaller value of for the purely additive model relative to the purely multiplicative model implies that 

the slope component of the series described by the additive model barely changes over time. As indicated by the 

decomposed series (Figure 4.2) the trend component frequently changes over time. Thus, a larger beta, as in the additive 

model could be appropriate to capture the trend component. Similarly, the error term can best be described by the 

multiplicative model since it has a relatively small value. Generally, the best model specification is of the 

multiplicative error, additive trend, and multiplicative seasonality(“MAM”). The model is assumed “optimal” and thus 

best fit for the data since it minimizes the RMSE of 2.30% by harmonizing all the parameters (Table 4.2) 

 

Table 90: Models Evaluation 

  Smoothing Parameters     
        

Model Specification Alpha Beta Gamma Phi MAPE 
      

ETS (A, Ad, A) 0.9903 0.1411 0.0096 0.8 2.44 

ETS (M, Md, M) 0.8024 0.1263 0.1937 0.9365 2.55 

ETS (M, Ad, A) 0.9983 0.1412 0.0017 0.8 2.33 

ETS (M, Ad, M) 0.9647 0.1378 0.0004 0.8742 2.30 
 

Note: All model parameters are optimized based on the minimization of BIC values  

 

Figure 4 shows the decomposition of the series using the resultant ETS (MAM) model into the level, slope, and the 
seasonal component  
 
 
 
 
 
 

7th International Research Conference Proceedings 3rd -4th Dec, 2020 pg. 587-597 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 30: Decomposition of the Series by ETS (MAM) 

 

Model diagnostics  
Use of time series modelling techniques relies on the satisfaction of the assumption that, the prediction errors are white 

noise in nature (Köppelová & Jindrová, 2019) usually an uncorrelated stochastic quantity with zero mean and constant 

variance (Zhang & Karniadakis, 2017). The residual plot in figure 4.4 depicts that the assumption of constant variance 

over time was met. That is the residuals seems to have a constant mean and variance over time with minor fluctuations. 

Secondly, the forecast errors are normally distributed as indicated by the histogram. Lastly, there is no significant 

autocorrelation at lags 1-24 as depicted by the Autocorrelation Function (ACF) plot.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 31: Residuals Diagnostics  
 
 

 

7th International Research Conference Proceedings 3rd -4th Dec, 2020 pg. 587-597 



Forecasting  
Given the MAM model minimized the MAPE and that the assumption of heteroscedasticity, normality, and no 

autocorrelation of the forecast errors was met, this HWES technique is an adequate predictive model of the industrial 
inputs price index. The 24 months step-ahead forecasts from the model are shown as a blue line, with the 80% prediction 

intervals as a dark grey shaded area, and the 95% prediction intervals as a grey shaded area (Figure 4.5).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 32: Forecasts from MAM HW model CONCLUSION  
The exponential smoothing technique was applied to the industrial inputs price index series to allow for an examination 

of its underlying component and in making short period time forecasting. The best forecasting model was a hybrid of 

both additive and multiplicative model. The specification of the model was a multiplicative error, additive trend, and 

multiplicative seasonality (“MAM”) with a performance accuracy of 2.3% in terms Mean Absolute Percentage Error 

(MAPE) in making 24 months step-ahead forecasts. The estimated smoothing of alpha, beta and gamma were; 0.9647, 

0.1378, and 0.0004, respectively. The low value of the seasonal parameter ( ) suggests that the industrial inputs price 

index series is not highly affected by seasonal fluctuations. The high value of the smoothing parameter points out that 

the variation of the series is large. The results highlight that the prices index series is higher variability in the short run. 

Thus, there is a need to ensure that prices are stable and sustainable. Nonetheless, the 24-period forecast indicates a 

falling trend in the price index. Owing to its simplicity and accuracy, the HWES technique can be of practicable 

importance for monthly time series forecasting 
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