

UNIVERSITY

UNIVERSITY EXAMINATIONS

FOURTH YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION SCIENCE/ARTS, BACHELORS OF SCIENCE

MATH 400: TOPOLOGY I

CHUKA

STREAMS: B.ED (SCI & ARTS) AND BSC

TIME: 2 HOURS

DAY/DATE: TUESDAY 04/12/2018

8.30 A.M. – 10.30 A.M.

INSTRUCTIONS:

- Answer Question ONE and ANY Other TWO Questions.
- Do not write on the question paper.

QUESTION ONE: (30 MARKS)

(a) Define a topological space (X, τ) . Hence find all possible topologies on $X = \{a, b\}$.

(5 marks)

- (b) (i) Prove that if A is a subset of a discrete topology, then set of its derived points
 - A is empty. (4 marks)

(ii)Prove that if x is a discrete topological space and A=x, then $\dot{A}=A$

(2 marks)

(c) Let $f: X \to Y$ be a constant function. Prove that then f is continuous relative to

 τ_X and τ_Y .

(3 marks)

(d) Using a counter example show that an open function or a closed function need not be continuous (3 marks)

MATH 400

- (e) When is a subset A said to be dense in X? Hence prove that if A is dense in X then for every open set subset $O \subset X$, O intersection A is non-empty. (4 marks)
- (f) (i) Let a∈R . Show that every closed interval [a-δ, a+δ] with the centre a is neighborhood of a . (2 marks)
 (ii) Let p∈X and denote N_p the set of all neighborhood of a point p.
 - (ii) Let P and denote P the set of all heighborhood of a point PProve that $\forall pairs N, M \in N_p, N \cap M \in N_p$ (3 marks)
- (g) Distinguish a regular space and a normal space. Give one example in each case.

(4 marks)

QUESTION TWO: (20 MARKS)

- (a) Let (X,τ) be a topological space, prove that finite union of closed sets is also closed.
 (3 marks)
- (b) Consider the discrete topology D on X = [a, b, c, d, e]. Find a subbase which does not contain any singleton sets (5 marks)

(c) If θ is a subbasis for the topologies τ and τ^{ι} on X, show that $\tau = \tau^{\iota}$

(5 marks)

- (d) Let ^B be a subset of a topological space (X, τ) . Prove that τ_B is a topology on ^B, where $\tau_B = [B \cap G: G \in \tau]$
 - (7 marks)

QUESTION THREE: (20 MARKS)

(a) Prove that a point $p \in X$ is an accumulation point of $A \subset X$ iff every member of some local base β_p at the point p contains a point of A different from

Page 2 of 4

p. (5 marks)

(b) State and prove the Kuratowski's closure axioms of a topological space (X, τ) .

(7 marks)

(c) Distinguish a T_1 space and a T_2 space, hence using appropriate counter examples show that a T_2 space $\Rightarrow T_1$ space and T_1 space $\Rightarrow T_0$ space but a T_0 space $\Rightarrow T_1$ and a T_1 space $\Rightarrow T_2$. (8 marks)

QUESTION FOUR: (20 MARKS)

(a) Let g: X → Y be a bijective. Prove that the following statements are equivalent.
(i) g is a homomorphism
(ii) g is open
(iii) g is closed
(iv) g(Â)=g(Â) (14 marks)
(b) Let P: X → Y be an open map and let S⊂Y be any subset of Y and A is a closed set in X such that P⁻¹(S)⊂A. Show that S⊂B and P⁻¹(B)⊂A.

(6 marks)

QUESTION FIVE: (20 MARKS)

- (a) Let ^(X,τ) be a topological space. Prove that a subset ^{A ⊂ X} is closed if and only if ^A contains all its limit points i.e. ^{A'}⊂A
 (8 marks)
- (b) Let β be a class of subsets of a non-empty set X. Prove that β is a base for some topology on X iff

(i)
$$X = \cup \{B: B \in \beta\}$$