MATH 424

UNIVERSITY

TIME: 2 HOURS

[5

CHUKA

HUKA UNIVER

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION (SCIENCE AND ARTS)

MATH 424: NUMERICAL ANALYSIS II

STREAMS: BED (SCI & ARTS) AB1, AB5

DAY/DATE:MONDAY 17/12/201811.30 A.M. – 1.30 P.M.INSTRUCTIONS: Answer question ONE (Compulsory) and any other TWO questions

QUESTION ONE (COMPULSORY) – 30 MARKS

(a) Use the method of least squares to find the equation that fits the data in the table

marks]

X	0	1	2	3	4
у	1	5	10	22	38

(b) Compute the Tchebysher polynomials $T_3(x)$ given that $T_n(x) = 2 x T_{n-1}(x) - T_{n-2}(x)$

and
$$T_o(x)=1$$
 and $T_1(x)=x$ [6

marks]

(c) Determine the best lower approximation
$$f(x)=2x^3+x^2$$
 on the interval $[-1,1]$

[4 marks]

(d) Consider the data in the table and use Lagrange's interpolation to find x given that

y = 2.75

[6 marks]

0.0	1.0	1.5	2.0	

MATH 424

X				
у	2.5	3.8	4.6	5.9

(f) Express
$$x^4$$
 in a series of $T_n(x)$ using the recurrence Tchebysher formula given that
 $xT_o(x) = T_1(x)$ [4 marks]

QUESTION TWO (20 MARKS)

(a)	Giver	n a general system of linear equation $A x = b$	
	(i)	Outline the LU factorization method	[2 marks]
	(ii)	Solve the system of equations using the Crout's method	[6 marks]
		$4x_1 + 2x_2 + 6x_3 = 16$	

 $2x_1 + 82x_2 + 39x_3 = 206$

$$6x_1 + 39x_2 + 26x_3 = 113$$

(b) Consider the data in the table below

x _i	$f(\boldsymbol{x}_i)$	$f'(x_i)$
8.3	17.565	3.116
8.6	18.505	3.156

(i) Construct the Hermite polynomial that fits the data based on divided differences

[4

marks]

(ii) Use the polynomial obtained in b(i) above to approximate f(8.4) [2 marks]

MATH 424

Use the principle of least square to fit a parabola of the form $ax^2 + bx^2c$ for the data (c)

[6

marks]

X	1.0	1.6	2.5	4.0	6.0
у	9.4	11.8	14.7	18.0	23.0

QUESTION THREE (20 MARKS)

Use the Cholesky method to solve system (a)

 $x_1 + 3x_2 + 4x_3 = 15$

$$2x_1 - 107x_2 + 3x_3 = 37$$

$$3x_1 + 2x_2 - 10x_3 = -10$$

- Approximate x for f(x)=2800 using the method of successive approximation of (b)
- the data in the table below

X	10	15	20
У	1754	2654	3564

Obtain the rational approximation of the farm (c)

$$\frac{a_2x^2 + a_1x + a_o}{b_1x + 1} \quad \text{for the fu}$$

2

inction

 $f(x)=x^2$ to e^x

[5 marks]

QUESTION FOUR (20 MARKS)

Define a diagonally dominant matrix and state its significance (a) (i) [2 marks]

(ii) Determine whether or not
$$\begin{bmatrix} 5 & -2 & 3 \\ -3 & 9 & 1 \\ 2 & -1 & -7 \end{bmatrix}$$
 is diagonally dominant [2]

marks]

(iii) Hence..... the system of equation using the Gauss Jacobi method with

 $x^{(o)} = [0,0,0]^T$

[7 marks]

[8 marks]

MATH 424

$$5x-2y+3z=-1$$

-3x+9y+z=2
 $2x-y+7z=3$ [8 marks]

(b) Find the largest eigenvalue and the corresponding eigenvector of the matrix using power

method with [1,1,1]
$$A = \begin{pmatrix} 2 & 2 & 1 \\ 4 & 3 & 4 \\ 7 & 6 & 1 \end{pmatrix}$$
 [8]

marks]

QUESTION FIVE (20 MARKS)

(a) Solve the system of linear equations using the Gauss Siedel method [9 marks] 14x-3y+5z=4 3x-10y-2z=125x+2y+20z=16

(b) Use the Lagranges interpolation method to find x given that y=2.75 [6 marks]

X	0.0	1.0	1.5	2.0
у	2.5	3.8	4.6	5.9

(c) Obtain the least linear approximation to the function $f(x) = \sin \pi x$ on [0,1] [5 marks]