SURVIVAL MODELS ACMT 412 MAIN EXAM

QUESTION ONE (30 MARKS)

- A. Differentiate between initial and central rates of mortality (4 Marks)
- **B.** Show algebraically that $e_x = P_x(1+_{ex+t})$ (5 marks)
- C. What is censoring in data? Give two types of data censoring and explain them (6 marks)
- D. State the formula for the relationship between the Kaplan Meier and Nelson Aalen estimates (5 marks)
- *E.* Give and explain an example of a situation in which the hazard function may be expected to follow each of the below distributions

(10

marks) i. Exponential ii. Decreasing Weibull iii. Gompertz Makham iv. Log logistic

QUESTION TWO (20 MARKS)

- A. Differentiate between covariate and proportional hazard model. (4marks)
- B. The covariates' for the ith observed life are (56, 183,40) representing (age last birthday, height in cm, daily dose of drug A in mg) Using the regression parameters β=(0.0172, 0.0028, 0.0036). Calculate λ (t:Z₁) in terms of λ₀ (t) (6 marks)
- C. (i) If μ_x takes the constant value 0.001 between ages 25 and 35. Calculate the probability that a life aged exactly 25 will survive to age 35. *(5 marks)*(ii)) If μ_x takes the constant value 0.0025 at all ages. Calculate the age x for which xP_o = 0.5. What does this age represent?

(5 marks)

QUESTION 3 (20 MARKS)

- A. Differentiate between Type 1 censoring and type II censoring (4 marks)
- B. What are the two conventions adapted by the Kaplan Maier estimate of the survivor function (6 marks)
- C. Butterflies of a certain species have short lives after hatching each butterfly experience a lifetime defined by the following probability distribution

Life time (days)	Probability
1	0.10
2	0.30
3	0.25
4	0.20
5	0.15

D. Calculate λ_t = for J = 1, 2, ... 5 and sketch a graph for a discrete hazard function. (10 marks)

QUESTION 4 (20 MARKS)

- A. Losses arising from a certain group of policies are assumed to follow an Exp (λ) distribution. You are given the below data
 - (i) The exact amount of x_1, x_2, \dots, X_n paid by the insurer in respect of n losses
 - (ii) Data from a further m losses in respect of whch the insuer paid an amount M. The actual loss amount exceeded M But we don't know how much.

Calculate the maximum likelhood estimator of λ (10 Marks)

B. List and explain the main problem of using a parametric approach to analyze observed survivor times. *(10 marks)* **QUESTION FIVE (20 MARKS)**

A. List and explain scenarios where type 1 censoring occurs (8 marks)

B. If μ_{60} = 0.01, μ_{61} = 0.02 and μ_{3} = 0.03. Calculate the values of

- (i) P₆₀
- (ii) ₂P₆₀
- (iii) 3**p**60

(9 marks)

C. List and explain 3 examples scenarios of Random censoring (3 marks)