CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FOURTH YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION SCIENCE/ ARTS, BACHELOR OF SCIENCE

MATH 412: DIFFERENTIAL GEOMETRY

STREAMS: BED (ARTS, SCI) BSC TIME: 2 HOURS

DAY/DATE: MONDAY 10/12/2018 11.30 AM – 1.30 PM

INSTRUCTIONS:

• Answer Question One and any other Two Questions

• Do not write on the question paper

Question One (30 Marks)

 ${\bf a.}\,$ Define a regular representation function on an interval $\ ^{I}\,$. Hence show that the

function $\begin{array}{c} t \\ \frac{(\verb"o"c") c"}{(\verb"o"c") c"} \\ x = (t+1)e_1 + \verb"o"c" \end{array} \ , \ \ -\infty \le t \le \infty \quad \text{is a regular parametric}$

representation.

(3 marks)

b. When is a real valued function $t=t(\theta)$ on an interval I_{θ} said to have an allowable change of parameter? Take $t=(b-a)\theta+a$, $0\leq\theta\leq1$, a< b to illustrate this.

(5 Marks)

- c. Given the space curve $x=(acost)e_1+(asint)e_2+bte_3$. Find its arc length for $0 \le t \le 2\pi$. (3 marks)
- d. State without proof the Fundamental existence and uniqueness Theorem (2marks)

- e. Prove that if x=x(s) is a natural representation on an interval I_s , then $i s_2 s_1 \lor i$ is the length of the arc x=x(s) between points corresponding to $x(s_1) \land x(s_2)$ (3 marks)
- f. Find the curvature and torsion of the curve $x=(3t-t^3)e_1+3t^2e_2+(3t+t^3)e_3$ and comment about your results. (6 Marks)
- g. Show that along a regular curve x=x(s),

$$\ddot{x} = -k^2 t + k n + \tau kb$$
Marks) (5

h. Show that the First Fundamental form is positive definite. (3 marks)

QUESTION TWO (20 Marks)

a. Find the equation of the oscillating plane of the helix

$$x = (cost)e_1 + (sint)e_2 + te_3 \quad \text{at} \quad t = \frac{\pi^c}{2}$$
 (6 marks)

- b. Derive the First Fundamental form I to the coordinate patch x=x(u,v) on a surface of class ≥ 2 . (7 marks)
- **c.** Consider the surface represented by $x=ue_1+ve_2+(u^2-v^2)e_3$. Find its second fundamental form II (7 marks)

QUESTION THREE (20 Marks)

- a. Prove that the First Fundamental form depends only on the surface and not on the particular representation (10 marks)
- b. Consider the helix $x(t)=acoste_1+asinte_2+te_3$. Find the equation of the principal normal and the osculating plane at $t=\frac{\pi}{2}$ (10 marks)

QUESTION FOUR (20 Marks)

- (a) Define torsion $\tau(s)$ of the curve C at the point $\mathbf{x}(s)$. Hence show that the sign of τ is independent of the sense of principal vector \mathbf{n} and the orientation of C. (6 marks)
- (b) Find the equations of the tangent line and normal plane to the curve $x=te_1+t^2e_2+t^3e_3 \quad \text{at} \quad t=1 \tag{6}$ marks)
 - (c) Define an involute of a curve C and show that its curvature [of an involute $x^{i}=x+(c-s)t \quad \text{of} \quad x=x(s) \quad \text{] is given by}$ $k^{i^2}=\frac{k^2+\tau}{(c-s)^2k^2} \qquad \qquad \text{(8 marks)}$

QUESTION FIVE (20 Marks)

- a. (i) Define a curvature vector on the curve C at the point x(s). Hence show that the curvature vector is independent of orientation.
 (3 marks)
 - (ii) Show that the curvature of the curve $x=a(cost)e_1+a(sint)e_2$, a>0 is $\frac{1}{a}$

(5 marks

marks)