CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

THIRD YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND STATISTICS, BACHELOR OF EDUCATION ARTS & SCIENCE & BACHELOR OF ARTS

MATH 344: THEORY OF ESTIMATION

STREAMS:BSC (ECON & STATS), BED (ARTS& SCI) BA Y3S1TIME: 2 HOURSDAY/DATE:FIRDAY 07/12/20188.30 A.M. – 10.30 A.M.INSTRUCTIONS:Attempt question ONE and any other TWO

QUESTION 1 (30 MARKS)

(a)	Briefly explain the following [[4 marks]
	(i)	T is an estimator of parameter θ	
	(ii)	T is an unbiased estimator of parameter θ	
(b)	Suppo	se that one can define the mean squared error MSE $(X) = E[(X - \theta)^2]$ for	or any
	estima	tor of θ . Now, given that T is an unbiased estimator of θ and that	
Var (2	$T = k\theta^2$	Determine an expression for $MSE(CT)$ and the value of C for	r which
MSE	$C(\boldsymbol{CT})$	is minimum where C is some constant	
[5 mar (c)	ks] Let	X_1, X_2, \dots, X_n be <i>n</i> independent observations of a random variable X_1	K which
assume	es	two values 0 and 1 with respective probabilities q and p such that	t

MATH 344

$$p+q=1 \quad \text{. Show that} \qquad \frac{T|T-1|}{n|N-1|} \text{ is an unbiased estimator of } p^2 \text{ where } T=\sum_{i}^{n} x_i \text{ .}$$

$$[6 \text{ marks}]$$

$$(d) \quad \text{Let } T_1 \text{ and } T_2 \text{ be two independent unbiased estimators of the same parameter } \theta$$
such that $Vor[T_1]=2Vor[T_2]$. Find the values of the constants K_1 and K_2 such $T=K_1 \quad T_1+K_2T_2$ is unbiased estimator of θ with the minimum possible variance [5 marks]
$$(e) \quad \text{Prove by contradiction that the minimum variance unbiased estimator (MVUE) is unique if it exists [5 marks]
$$(f) \quad \text{Let } X_1, X_2, \dots, X_n \quad \text{be } n \quad \text{independent observations of a random variable X from a normal distribution with mean μ and variance σ^2 . Show that the sample mean \hat{x} is a consistent estimation of the population mean μ provided the variance is finite.
$$[5 \text{ marks}]$$

$$(a) \quad \text{Let X be a Poisson variate with parameter } \lambda i.e X \sim P[\lambda]$$

$$(a) \quad \text{Let X be a Poisson variate with parameter } \langle n\lambda \rangle \text{ i.e } X \sim P[n\lambda]$$

$$(b) \quad \text{Consider a normal random variance X with mean } \mu \text{ and variance } \theta^2$$
. Where θ^2
is known. Find the sufficient statistic for μ . (Hint: use the Pitman-Koopman form of distribution).
$$[10 \text{ marks}]$$

$$(10 \text{ marks}]$$$$$$

MATH 344

- (a) State any 3 properties of the maximum likelihood estimates [3 marks]
- (b) Suppose a random sample of size n is drawn from a probability distribution function

given by

$$f(x) = \begin{cases} \frac{\theta^{2x} e^{-\theta^2}}{x!} , x = 0, 1, 2... \\ 0 , elsewhere \end{cases}$$

Find the maximum likelihood estimator for θ [10 marks] (c) Consider a random variable X whose probability distribution function is given by $f(x) = \begin{cases} e^{-(x-\lambda)} & , 0 \le x < \lambda \\ 0 & , elsewhere \end{cases}$ Find the maximum likelihood estimator for λ if a sample of size n is considered [7 marks] **QUESTION 4 (20 MARKS)** Let X_1, X_2, \dots, X_{n_1} be a random sample of size n_1 taken from a normal distribution (a) with mean μ_1 and a known variance σ_1^2 . On the other hand, let Y_1 , Y_2, \dots, Y_{n_2} be a sample of size n_2 taken from a normal distribution with mean μ_2 and a random σ_2^2 . Derive the 100(1-a) confidence interval for $(\mu_1 - \mu_2)$. known variance [10 marks] Let \dot{x} the mean of a random sample of size n with parameters (μ, σ^2) from a (b) population. Find the sample size n such that $P[(\dot{x}-1) < \mu < (\dot{x}+1)] = 0.9$ normal [10

marks]

QUESTION 5 (20 MARKS)

(a) Briefly describe the method of moments for the estimation of parameters. [8 marks]
(b) Explain the main disadvantage of the method of moments for parameter estimators.

[2 marks]

MATH 344

(c) Let X $G(a,\lambda)$. Find the parameter estimates for a and λ using the method of moments [10 marks]
