CHUKA

UNIVERSITY EXAMINATIONS

THIRD YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND STATISTICS, BACHELOR OF EDUCATION ARTS \& SCIENCE \& BACHELOR OF ARTS

MATH 344: THEORY OF ESTIMATION

STREAMS: BSC (ECON \& STATS), BED (ARTS\& SCI) BA Y3S1
TIME: 2 HOURS
DAY/DATE: FIRDAY 07/12/2018
8.30 A.M. -10.30 A.M.

INSTRUCTIONS: Attempt question ONE and any other TWO

QUESTION 1 (30 MARKS)

(a) Briefly explain the following
(i) T is an estimator of parameter θ
(ii) T is an unbiased estimator of parameter θ
(b) Suppose that one can define the mean squared error MSE $\quad(X)=E\left\{(X-\theta)^{2}\right\}$ for any estimator of θ. Now, given that T is an unbiased estimator of θ and that $\operatorname{Var}(T)=k \theta^{2}$. Determine an expression for $\operatorname{MSE}(C T)$ and the value of C for which $\operatorname{MSE}(C T)$ is minimum where C is some constant
[5 marks]
(c) Let $X_{1}, X_{2}, \ldots, X_{n}$ be n independent observations of a random variable X which assumes two values 0 and 1 with respective probabilities $\quad q$ and $\quad p$ such that
$p+q=1$. Show that $\quad \frac{T(T-1)}{n(N-1)}$ is an unbiased estimator of p^{2} where $T=\sum_{i}^{n} x_{i}$.
[6 marks]
(d) Let T_{1} and T_{2} be two independent unbiased estimators of the same parameter θ such that $\quad \operatorname{Var}\left(T_{1}\right)=2 \operatorname{Var}\left(T_{2}\right)$. Find the values of the constants K_{1} and K_{2} such $T=K_{1} \quad T_{1}+K_{2} T_{z} \quad$ is unbiased estimator of $\quad \theta$ with the minimum possible variance [5 marks]
(e) Prove by contradiction that the minimum variance unbiased estimator (MVUE) is unique if it exists
(f) Let $X_{1}, X_{2}, \ldots, X_{n}$ be n independent observations of a random variable X from a normal distribution with mean μ and variance σ^{2}. Show that the sample mean \dot{x} is a consistent estimation of the population mean ${ }^{\mu}$ provided the variance is finite. [5 marks]

QUESTION 2 (20 MARKS)

(a) Let X be a Poisson variate with parameter λ i.e $X \sim P(\lambda)$
(i) Verify whether $T=\sum_{i} x_{i}$ is a sufficient statistic for λ. Here assume that T is

$$
\text { poisson with parameter } \quad(n \lambda) \quad \text { i.e } \quad X \sim P(n \lambda)
$$

[5 marks]
(ii) Show that ${ }^{\prime}$ is the minimum variance bound unbiased estimator (MVBUE)
[5 marks]
(b) Consider a normal random variance X with mean μ and variance θ^{2}. Where θ^{2}
is known. Find the sufficient statistic for ${ }^{\mu}$. (Hint: use the Pitman-Koopman form of distribution).
[10 marks]
QUESTION 3 (20 MARKS)
(a) State any 3 properties of the maximum likelihood estimates
(b) Suppose a random sample of size n is drawn from a probability distribution function given by

$$
f(x)=\left\{\begin{array}{cc}
\frac{\theta^{2 x} e^{-\theta^{2}}}{x!} & , x=0,1,2 \ldots \\
0 & , \text { elsewhere }
\end{array}\right.
$$

Find the maximum likelihood estimator for θ
(c) Consider a random variable X whose probability distribution function is given by

$$
f(x)=\left\{\begin{array}{cc}
e^{-(x-\lambda)} & , 0 \leq x<\lambda \\
0 & , \text { elsewhere }
\end{array}\right.
$$

Find the maximum likelihood estimator for λ if a sample of size n is considered
marks]
QUESTION 4 (20 MARKS)
(a) Let $X_{1}, X_{2}, \ldots X_{n_{1}}$ be a random sample of size n_{1} taken from a normal distribution with mean μ_{1} and a known variance σ_{1}^{2}. On the other hand, let $Y_{1}, Y_{2}, \ldots Y_{n_{2}}$ be a random \quad sample of size n_{2} taken from a normal distribution with mean μ_{2} and a known variance $\quad \sigma_{2}^{2}$. Derive the $100(1-a)$ confidence interval for $\left(\mu_{1}-\mu_{2}\right)$. [10 marks]
(b) Let ${ }^{\dot{x}}$ the mean of a random sample of size ${ }^{n}$ with parameters $\left(\mu, \sigma^{2}\right)$ from a
normal population. Find the sample size n such that $P[(\dot{x}-1)<\mu<(\dot{x}+1)]=0.9$
marks]
QUESTION 5 (20 MARKS)
(a) Briefly describe the method of moments for the estimation of parameters.
(b) Explain the main disadvantage of the method of moments for parameter estimators.

MATH 344

(c) Let $X G(a, \lambda)$. Find the parameter estimates for ${ }^{a}$ and λ using the method of moments
[10 marks]

