CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE, BACHELOR OF EDUCATION ARTS

MATH 342: QUALITY CONTROL METHODS

STREAMS: BSC, BED, BA
TIME: 2 HOURS

DAY/DATE: MONDAY 10/12/2018
2.30 PM - 4.30 PM

INSTRUCTIONS:

ANSWER QUESTION ONE COMPULSORY AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

(a) Distinguish between assignable and chance variation and cite an example [4 marks]
(b) Control charts of \dot{X}, R and S are to be maintained on samples of size $\mathrm{n}=10$ from a normally distributed process where it is known that the population mean and variance are known to be $\mu=80$ and $\sigma^{2}=100$ respectively. Find the center line and control line for each of these 3 charts.
(c) Sample of size $\mathrm{n}=6$ item are taken from a manufacturing process at regular interval. A normally distributed quality characteristic is measured and ${ }^{\prime}$ and S values are calculated for each sample. After 50 subgroups have been analysed the following results were obtained.

$$
\sum_{i=1}^{50} \dot{X} i=1000 ; \sum_{i=1}^{50} S i=75
$$

Compute the control limit for the ${ }^{\prime}$ and S charts. marks]
(d) A double samples plan has $n_{1}=25, n_{2}=50, C_{1}=1, C_{2}=3$. Compute the probability of acceptance of a 4% defective lot. marks]
(e) The number of non-conformities observed in the final inspection of goods has be given as in the table below

Sample No	No. of goods inspected	Total No. of non-conformity
1	3	20
2	1	10
3	4	30
4	2	10

Calculate the control limits and determine whether the process is in statistical control.
marks]

QUESTION TWO (20 MARKS)

(a) Briefly explain 3 classifications of statistical quality control.
(b) Manufacturing is initiated on a new feed pipe to be used as a water line in a particular heater. To monitor the length of the pipe, ${ }^{X} \quad$ and R-charts were initiated based on 25 sub- groups.

$$
\sum X X=500 \wedge \sum R=51.474
$$

What should be the $3-\delta$ control limit foer the $\quad \dot{X}$ and R-charts marks]
(c) The number of defects on 18 items are given below

2	0	0	1	4	0	0	1	2
2	0	0	1	2	3	0	2	1

Calculate the control limits

QUESTION THREE (20 MARKS)

(a) Outline four advantages of statistical quality control.
(b) The following data was obtained over a 25-day period to initiate $\quad \dot{X}-i$ chart for a quality characteristic of a manufactured product. The subgroup size was 5

Sample No	\dot{X}_{i}	R_{i}	Sample No	\dot{X}	R_{i}

1	73.99	0.039	14	73.998	0.029
2	74.006	0.016	15	74.010	0.038
3	73.997	0.021	16	74.001	0.019
4	74.001	0.026	17	74.008	0.036
5	74.007	0.018	18	74.003	0.022
6	73.998	0.021	19	74.003	0.026
7	74.009	0.021	20	73.996	0.024
8	74.000	0.033	21	74.000	0.012
9	74.002	0.019	22	73.997	0.030
10	74.002	0.025	23	74.004	0.014
11	74.005	0.022	24	73.998	0.017
12	73.998	0.035	25	74.994	0.008
13	74.001	0.011			

Required:

(i) Obtained control limits for $\quad \stackrel{X}{X}$ and R charts [9 marks]
(ii) Estimate δ (standard deviation)
[2 marks]
(c) Find the probability of acceptance in a single plan with $\mathrm{n}=80$ and $\mathrm{C}=3$. Assume the lot fraction defective is 1%
[5 marks]

QUESTION FOUR (20 MARKS)

(a) In a double sampling plan the parameters are $n_{1}=50, C_{1}=2, n_{2}=100$ and $C_{2}=6$. Consider a lot with exactly 5% defective. Find:
(i) The probability of acceptance on the first sample
(ii) The probability of acceptance on the second sample
(iii) The probability of acceptance
(b) The sample fraction defective for 27 samples of size 50 are given below

0.10	0.20	0.30	0.18	0.12	0.34	0.26	0.24	0.10
0.18	0.12	0.14	0.32	0.18	0.28	0.20	0.36	0.24
0.14	0.24	0.30	0.16	0.20	0.08	0.16	0.26	0.22

Calculate the control limit for the P-chart.
(a) A control chart indicates that the current process fraction non-conforming is 0.01 . if 40 items are inspected each day, what is the probability of detecting a shift in the fraction non-conforming to 0.02 on the first day after the shift.
[7 marks]
(b) Briefly describe
(i) The single sampling plan [5 marks]
(ii) The double sampling plan
[8 marks]

