CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE, BACHELOR OF EDUCATION ARTS

MATH 342: QUALITY CONTROL METHODS

STREAMS: BSC, BED, BA

TIME: 2 HOURS

DAY/DATE: MONDAY 10/12/2018 INSTRUCTIONS: 2.30 PM - 4.30 PM

ANSWER QUESTION ONE COMPULSORY AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

- (a) Distinguish between assignable and chance variation and cite an example [4 marks]
- (b) Control charts of \dot{X} , R and S are to be maintained on samples of size n=10 from a normally distributed process where it is known that the population mean and variance are known to be $\mu = 80$ and $\sigma^2 = 100$ respectively. Find the center line and control line for each of these 3 charts. [9 marks]
- (c) Sample of size n=6 item are taken from a manufacturing process at regular interval. A normally distributed quality characteristic is measured and \hat{X} and S values are

calculated for each sample. After 50 subgroups have been analysed the following results were obtained.

$$\sum_{i=1}^{50} \acute{X} i = 1000; \sum_{i=1}^{50} Si = 75$$

Compute the control limit for the X and S charts. [8 marks]

(d) A double samples plan has $n_1=25$, $n_2=50$, $C_1=1$, $C_2=3$. Compute the probability of acceptance of a 4% defective lot. [5 marks]

Sample No	No. of goods inspected	Total No. of non-conformity
1	3	20
2	1	10
3	4	30
4	2	10

marks]

QUESTION TWO (20 MARKS)

(a)	Briefly explain 3 cla	assifications of statistical quality control.	[6 marks]
-----	-----------------------	---	-----------

(b) Manufacturing is initiated on a new feed pipe to be used as a water line in a particular heater. To monitor the length of the pipe, \dot{X} and R-charts were initiated based on 25

sub- groups. $\sum \dot{X} = 500 \land \sum R = 51.474$

What should be the $3-\delta$ control limit for the X and R-charts [9 marks]

(c) The number of defects on 18 items are given below

2	0	0	1	4	0	0	1	2
2	0	0	1	2	3	0	2	1

Calculate the control limits

QUESTION THREE (20 MARKS)

(a) Outline four advantages of statistical quality control. [4 marks]

(b) The following data was obtained over a 25-day period to initiate $\dot{X} - \dot{c}$ chart for a quality characteristic of a manufactured product. The subgroup size was 5

Sample No	Ϋ́ _i	R_i	Sample No	X	R _i
-----------	-----------------	-------	-----------	---	----------------

[5 marks]

1	73.99	0.039	14	73.998	0.029
2	74.006	0.016	15	74.010	0.038
3	73.997	0.021	16	74.001	0.019
4	74.001	0.026	17	74.008	0.036
5	74.007	0.018	18	74.003	0.022
6	73.998	0.021	19	74.003	0.026
7	74.009	0.021	20	73.996	0.024
8	74.000	0.033	21	74.000	0.012
9	74.002	0.019	22	73.997	0.030
10	74.002	0.025	23	74.004	0.014
11	74.005	0.022	24	73.998	0.017
12	73.998	0.035	25	74.994	0.008
13	74.001	0.011			

Required:

(i)	Obtained control limits for	Ń	and R charts	[9
marks]				

(ii)	Estimate	δ	(standard deviation)	[2 marks]
------	----------	---	----------------------	-----------

(c) Find the probability of acceptance in a single plan with n=80 and C =3. Assume the lot fraction defective is 1% [5 marks]

QUESTION FOUR (20 MARKS)

(a)	In a d	ouble sampling plan the parameters are	$n_1 = 50$,	<i>C</i> ₁ =2 ,	$n_2 = 100$	and
$C_2 =$	6	Consider a lot with exactly 5% defective	ve. Find:			
	(i)	The probability of acceptance on the fi	rst sample		[4 n	narks]
	(ii)	The probability of acceptance on the se	econd samp	le	[10	marks]

- (iii) The probability of acceptance [1 mark]
- (b) The sample fraction defective for 27 samples of size 50 are given below

0.10	0.20	0.30	0.18	0.12	0.34	0.26	0.24	0.10
0.18	0.12	0.14	0.32	0.18	0.28	0.20	0.36	0.24
0.14	0.24	0.30	0.16	0.20	0.08	0.16	0.26	0.22

Calculate the control limit for the P-chart.

[5 marks]

QUESTION FIVE (20 MARKS)

(a) A control chart indicates that the current process fraction non-conforming is 0.01. if 40 items are inspected each day, what is the probability of detecting a shift in the fraction non-conforming to 0.02 on the first day after the shift. [7 marks]

(b) Briefly describe

(i)	The single sampling plan	[5 marks]
(ii)	The double sampling plan	[8 marks]