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ABSTRACT

I n this paper we introduce the notion of Quasnilarity of bounded linear operators in Hilbert Spaces. We do so by
defining aquast affinity from one Hilbert Space H to K. Some resultsgaast affinities are also discussett. has
already been shown that on a finite dimensional Hilbert Spqeasi similarity is an equivalence relation that it is
reflexive, symmetric and also transitive. Using the definition of conmtsutétwo operators, we givan alternative
result b show thatquasi similarity is an equivalence relation on an nité dimensional Hilbert Space. Finallyve
establishthe relationshipbetweenguasi similarity and almost similaritgquivalenceelations in Hilbert Spacessing
hermitian and normabperaors.
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1. INTRODUCTION

In this paper Hilbert spaces or subspaces will be denoted by deftiéas, H and K respectively and’, A, B e.t.c.
denotes bounded linear operators where an operator means a bounded liséamiasionB(H) will denote the
Banach algebra of bounded linear operator&l 0B(H, K) denotes the set of bounded lind@nsformations fronil
to K, which is equipped with the (induced uniform) normTI|€ B(H), thenT"* denotes the adjoint whil&er(T),
Ran(T), M and M+ stands for thekernel of T, range of T, closure of M and orthogonanptement ofa closed
subspace M of H respectively. Fan operatorT, we also denote by (T),II T I the spectrum and norm @f
respectively.

We need the following definitions:

An operatofT € B(H) is said to be:

Self adjoint or Hermitianf 7* = T (equivalently, if(Tx, x)ER, V€ H);

Unitary if T*T = TT* = I; Normalif T*T = TT”* (equivalently, ifl Tx I=I T*x || Vx € H).

Let H and K be Hilbert spaces. An operatdre B(H, K) is invertibleif it is injective (one-to- one) and surjective

(onto or has dense range); equivalentlykier (X) = {0} and Ran(X) = K. we denote the class afivertible linear
operators by; (H, K).

The commutatorof two operatorsA and B, denoted by[4, B] is defined byAB — BA. The self -commutatorof an
operatord is [A,A*] = A*A — AA".
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Two operators € B(H) andS € B(K) aresimilar (denotedl' = S) if there exists an operatdre G (H, K) such that
XT = SX (i.eX 1SX or S = XTX™ ') where G (H,K) is a Banach subalgebra &f(H,K) which is an invertible
operator fromH to K.

Linear operatord” € B(H) and S € B(K) areunitarily equivalent(denotedl’ = S), if there existsa unitary operator
U € G (H,K) such thatUT = SU (i.e,T = U*SU or equivalently S = UTU™).

Two operators are considered tteame” if they are unitarily equivalentsince they have the sameoperties of
invertibility, normality, spectral picture (norm, spectrum and specadius).

An operatorX € B (H,K) is quastinvertible or a quasiaffinity if it is an injedive operator with dense range
(i.e. Ker X ={0}and Ran(X) = K; equivalently, Ker X = {0} and, Ker X* = {0}. Thus X € B(H,K) is quasi
invertible if and only ifX* € B(K, H) is quasiinvertible).

An operatorT € B(H)is a quasi—affine transformof S € B(K) if there exists a quasivertible X € B(H,K) such
that XT = SX (ie X intertwines T and S). T is aquastaffinetransformof S if there exists a quasinvertible operator
intertwining T to S.

Two operatorg” € B(H) and S € B(K) are quastsimilar (denotedT~S) if they arequastaffine transformsf each
other (i.e.jf there exists quashvertible operatorX € B(H,K) and Y € B(K, H) such thatTX = XS and YS =TY).

T is said to belensely intertwinetb S if there exists an operator with dense range interbgifii to S.
Two operatorss and T are said to balmost similar(denoted bys ¢ T) if there exists an invertible operatrsuch
that the following two conditions are satisfied:
$*S = N"Y(T*T)N
S*+S=N"YT*+T)N.
Almost similarity of operators is also an equivalence relation.
2.MAIN RESULTS

2.1. Quasi-affinities of operators

Definition 2.1.1: The commutatoof A € B(H), {A}'is the set of all operators B(H) that commuteswitl, i.e.
{A} = {C € B(H):CA = AC}.

Proposition 2.1.2: The commutant of an operator (is the set of all operators intertwining it to itselfjwines itself.
Claim: C;+C, € {A} andC;C, € {A} wheneverC,,C, € {A}.

Proof: {A} = {C € B(H): CA = AC}. Now (C;+C;)A = C;A + C,A = AC,+AC, = A(C,+C,), that is

(C1+C2)A = A(C1+C2) and(C1C2)A = Cl (CzA) = Cl (ACZ) = (ACZ)Cl = A(Czcl) = A(C1C2) that |S

(C1C)A = A(C,Cy) as required.

Actually {A} is an operator algebra which contains the identity.

Theorem 2.1.3: Unitary equivalence is an equivalence relation.

Proof: See [9.

Remark 2.1.4: It has already been proved [9] that similarity is an equivalence relation &{H).

The natural concept of equivalence between Hilbert space operators is unitalesgaiwhich is stronger than
similarity.

Theorem 2.1.5[10, Proposition 3.3]: If X is a quasiaffinity fromH to K and Y is a quasiaffinity fromK to L, then
(@) YX is a quasiaffinity from H to L and XY is a quasiaffinity from L to H.
(b) If X € B(H) is a quasi — af finity, then X*is a quasiaffinity.

Proof: (a) SinceS and T are called quassimilar there exist quasiffinities X € B(H,K) andY € B(K, H) such that
XS =TX andTY =YS.
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With this in mind, we draw the following diagram such that it “comniutes

H Y K X “H Y . K
S Y T S T

VL v v v
H Y T K X " H Y T K

We want to prove thatY andYX are quasaffinities. Clearly,XY is oneto-one since it is the composition of ette
one operators. It sutfes to prove thakY has a dense range.

Note that(XY) c H. It follows thatXYH = X(YH) = X(K) = H. ThereforeRan(XY) = H. This proves that XY has
dense range.

Similarly, YX is oneto- one (since it is the composition of etteone operators). To show that it has dense range, note
that(YX) c K. It follows thatYXK = Y(XK) = Y(H) = K. ThereforeRan(YX) = K.

Now S(XY) = XTY = (XY)S, which shows thaXY is a quaskaffinity in {S}’, the commutant ofS.

Also, (YX)T =Y(XT) = YSX =T(YX), thatis YX is a quasaffinity in {T}, the commutant off".
(b) SinceX € B(H) is a quasaffinity, KerX = {0}, Ran(X) = H. We recall that

Ker X = Ran (X*) 1)
Ker (X*) = Ran (X) (2)
Ran(X) = Ker (X*)® 3)
Ran(X*) = Ker (X) (4)

Therefore, sincé&er X = {0}, we have Ker (X)’= H = Ran(X*) by (4) which implies thatX* has a dense range.
X* is oneto-one (sinceKer (X*) = 0). X" is therefore a quasiffinity.

Note: The proof of the following Theorem follows from Theorém.5

Theorem 2.1.6 [10, Proposition 3.4]: If A is a quasiaffine transform ofB and B is a quasiaffine transform ofC ,
then

(a) A is a quasiaffine transform ofC.

(b) B*is aquastaffine transform ofi*.

Proposition 2.1.7[10]: If X is a quasiaffinity fromH to K, then | X| = vX*X is a quasiaffinity on H (i.e.fromKto H).
Moreovey X|X|~! extends by continuity to a unitary transformatidfrom H to K .

Lemma 2.1.8 [3, Lemma 2.6]: Let X € B(H,K) and Y € B(K, L) be quasiaffinities where H,K and L are finite
dimensional Hilbert spaces. Then the invef&¥)~! € B(L, H) of the composit¥X exists andYX)™! = X~ty-1,

Proof: The operatofYK € B(L, K) is bijective, so that’ X exists. We thus have
(YX)(vx)~! = I, is the identity operator oh. Applying Y~! and using Y'Y = I, we obtain Y-lYX(YX)™! =
X(Yx)"' =y, =y~ ApplyingX~! and using{~'X = I, weobtainX1X(yX)"! = (vX)"! = x"ly-1,

Proposition 2.1.9[10, Proposition 3.4]: If a unitary operatord on a Hilbert spacé] is the quasaffine transform of a
unitary operatorB on a Hilbert spac& thenA andB are unitarily equivalent.

Proof: LetX € B(H,K) be a quasaffinity. Then

XA = BX (1)
implies that X = B~1X = XA™! = X4* )
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From(1) and(2) we obtain
X|?A=X"XA=X"BX = AX"X = A|X|> and by iteration |X|?"A = A|X|*"(n = 0,1,..); hence p(|X|>)A =
1
Ap(]X|?) for every polynomiap(x). Let {p,(x)} be asequence of polynomials tending |X|z uniformly on the
1
interval0O< x <|l X llz. Thenp, (|X]%) converges (in the operator norm)|#j so that we obtain a limit relation
1X14 = AlX| 3)

From (1) and(3) it follows that BU|X| = BX = XA = U|X|A = UA|X|; becausgX|H is dense inH, it results that
BU = UA. By Proposition 2.1.3 abov# is unitary and hencd and B are unitarily equivalent.

Theorem 2.1.10: Quastsimilarity is an equivalence relation on the class of all operators.
Proof: LetA € B(H),B € B(K), C € B(L) respectively. First we shof~A.

ThenXA = AX andAY = YA whereX andY are quasaffinities. ChoosingX =Y = I (without loss of generality) we
have thatA~A. This proves reflexivity.

Now supposehat A~B. We show thatB~A. Since A~B there exist quasaffinitiesX € B(H,K) and Y € B(K,H)
such thatXA = BX and BY = YA. By symmetry of compositions, it is trileat BX = XA andYA = BY. Hence B~A.
This proves symmetry.

Supposed~B and B~C. Then we show thai~C.

There exist quasaffinitiesX € B(H,K), Y € B(K,H) and Z € B(K,L), R € B(L,K) respectively such that
XA =BX, AY =YB 1)
andZB = CZ, CR =RB 2)

RZYX is aquastaffinity; it is oneto-one since it is a composition of eteeone operators.
RZYXA = RZAYX, sinceYX € {4}

= RZYBX, since AY =YB

= RBZYX, sinceZY € {B}

= CRZYX, sinceRB = CR

Which is clearly a quasiffinity and AYXZR = YXAZR, sinceYX € {4}
= YBXZR, sinceXA = BX
= YXZBR, sinceXZ € {B}
= YXZRC, since ZR € {C} .
Therefore A~C .This proves that quasisimilarity is an equivalence relation.
Theorem 2.1.11: If T € B(H) andS € B(K) are similar operators, then they are quagiilar.
Proof: There exist a quaénvertible operatoX € B(H, K) such thaT = SX.
This implies thatX~1S = TX~1, where X! € B(K,H). =5~T.

2.2. RELATIONSHIP BETWEEN UNITARY EQUIVALENCE, QUASISIMILARITY AND ALMOST
SIMILARITY

Proposition 2.2.1[8, Proposition 1.2]: If4, B € B(H) such thatd andB are unitarily equivalent, thed *: B.

Proof: By assumption, there exists a unitary operadtsuch thatd = U*BU which implies thatd* = U*B*U. Thus
A*A=U*B*UU*BU = U*B*BU = U™'B*BU,and A*+ A= U*B*U + U'BU = U*(B* + B)U = U™ (B* + B)U.

Proposition 2.2.2 [8, Proposition 1.3]: If A,B € B(H) such thatd %3 B, and if A is hermitian,thenA and B are
unitarily equivalent.

Proof: By assumption, there exists an invertible operat®uch thatA* + A = N"1(B**B)N. SinceA is hermitian
and A *S B by Proposition 4.1.8[7],Bis hermitian. Thus we have 24 = N"12BN which implies that
A = N71BN. This implies thatd andB are similar (.e. A~B) and since both operators are normal (bbt#mdB are
hermitian), they @ unitarily equivalent.
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Remark 2.2.3: The Propositior2.2.2gives a condition under which almost similarity of operators implies similarity.
Theorem 2.2.4: If Ais a normal operator an® € B(H) is unitarily equivalent ta, thenB is normal.

Proof: Suppose8 = U*AU where U is unitary and A is normal. Then
B*B = (U"A"U)(U*AU )=U"A*"AU=U*AA*U=B U*A*U = BU*UB*=BB”

which proves the claim.

Corollary 2.2.5: If A,B € B(H) are normal wherd{ is an infinite dimensional Hilbert space such th&tnd Bare
Quastisimilar, thenA * B.

Proof: SinceA, B € B(H) are quassimilar, there exists quaaifinities X € B(H, K) and
Y € B(K, H) such that

XA = BX andBY = YA (1)
X andY are both invertible and sbY,YX are both invertibleWithout loss of generality, eV = XY or YX. Then
XY € {AY and YX € {B},i.e. AXY = XYA = A = XYA(XY)™!
and YXB = BYX = B = (YX)"'BYX 2)
Since XY is invetible, (XY)* = Y*X* and (XY)~! = ((XY)")~! = (v*X*")"l=x*"v* .

Now, A"A = (X" Y A"Y*X*)XYA(XY)™ = (X 'v* 'Y*BX*)XBYY 1x~!
= (x*'BX*)(XBX ™).

Since A and B are similar normal operators, they arernilgigquivalent by Proposition.2.2 so that

A*A = (X" BX*)XBX~' = XB*BX ! 3)
Also, A" + A = (X*‘lBX*) +(XBX ) =XB*'X '+ XBX ' =X(B*+B)X! (4)
that is

A*A=N"1B*BN andA* + A= N"'B* + BN where N = X~! is an invertible operator.

Remark 2.2.6: Corollary 2.2.5gives a condition under which similarity implies qusisnilarity which in turn implies
almost similarity.

The following Theorem enables us obtain an example of giragar operators:

Theorem 2.2.7[8, Theorem 2.5]: Suppose that for eachin some index sed, there are Hilbert spaced,andK, and
operatorsT, € B(H,) and S, € B(K,) respectively which are quasimilar. LetT be the operatofl = Y,c,® T,
acting on the Hilbert space which is the direct sum of the sgacasdsS = Y ,c.®@ S, € B(K)

where K = Y,e4@® K,.Then T is quasisimilar to S.

Proof: SupposeX, and Y, are the quashvertible operators such thaX,T, =S,X, and T,Y, = Y,S,. If

X=Yeea® X /Il XNand Y =X,ea® Y, /I Y I, then X andY are the quasinvertibles and satisfy the desired
equations.

Example 2.2.8: Let A, and B, be unilateral shift operators with weighisand % respectively om —dimensional

Hilbert spaceH. ThenA is the Jordan canonical form faB, and soA and B, are similar. If A =Y_,A, and
B =Y>_, B, then by the above Theored is quasisimilar to B.

Remark 2.2.9: Recall that an operatdf € B(H, K) intertwinesA € B(H) toB € B(K) if XA = BX. If A is densely
intertwined toB, then there exists an operator with dense range intertwisittgB.
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