CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE (GENERAL)

MATH 321: CALCULUS III

STREAMS: BSC (GEN) TIME: 2 HOURS

DAY/DATE: MONDAY 17/12/2018 2.30 P.M. – 4.30 P.M.

INSTRUCTIONS: Answer question ONE (Compulsory) and any other TWO questions

QUESTION ONE (COMPULSORY) – 30 MARKS

(a) State the Rolle's theorem and verify for $f(x)=x^2+2x^{-8}$ on [-4,2]

[5 marks]

(b) Evaluate the following limits using L' Hopitals rule

(i)
$$\lim i x \to \infty \frac{x^3 + x + 1}{3x^3 + 4}$$

[3 marks]

(ii)
$$\lim \dot{c} x \to \infty \frac{\sin 3x}{x}$$

[2 marks]

(c) Find the sum of the series

[4 marks]

$$\sum_{k=1}^{\infty} \left(\frac{3}{4^k} - \frac{2}{5^{k-1}} \right)$$

(d) Find the volume of the solid under $f(x,y)=12-\frac{1}{2}x-\frac{1}{8}y$ over the rectangular [0,8]x[0,16]

[5 marks]

$$\int_{1}^{4} \int_{-1}^{2} (2x + 6x^{2}y) dy dx$$

(e) Evaluate [4 marks]

(f) Verify the Lagrange's mean value theorem for the function $f(x)=x^{\frac{2}{3}}$ in the interval [-8,27]

[3 marks]

(g) Use double integration to find the area of the triangle bound by $y=0, x=1 \land y=2x$

[4 marks]

QUESTION TWO (20 MARKS)

- (a) Use the Maclaurin's theorem to expand $f(x) = \sqrt{1+x}$ and use it to approximate $\sqrt{1.01}$ to
- 5 decimal places [7 marks]
- (b) Find the mass and centre of mass for a rectangular Lamina bounded by $y=x^{\frac{1}{2}}$, y=0 and x=1 having a mass density function e(x,y)=x [9 marks]

(c) Show that
$$\lim \dot{c} x \to 2 \left[\frac{2x^2 - 3x - 2}{x - 2} \right] = 5$$

[4 marks]

QUESTION THREE (20 MARKS)

(a) Apply the integral test to determine the convergence of the series

$$\sum_{n=1}^{\infty} \frac{1}{n+1}$$

[4 marks]

MATH 321

- (b) (i) If $f(x,y)=x^3y^2-2x^2y+3x$ find the second derivatives [3 marks]
- (ii) Determine whether or not $f(x,y)=x^3y^2-2x^2y+3x$ is a harmonic function [3 marks]
- (c) Find the surface areas of the surface z=6-3x-2y above the region R bounded by

$$y=0, x=2 \land y=\frac{-3}{2}x+3$$
 [5 marks]

$$\int_{0}^{1} \int_{0}^{2} \left(x^{2} y + x y^{3} \right) dy dx$$

(d) Evaluate [5 marks]

QUESTION FOUR (20 MARKS)

$$\sum_{n=0}^{\infty} a_n$$

- (a) (i) State the Ratio test for the convergence of an infinite series [2 marks]
 - (ii) Hence use ratio test to determine the convergence of the series $\sum_{n=1}^{\infty} \frac{2^n}{2n!}$

[5 marks]

- (b) Determine the volume V of the solid under the surface $Z=4-x^2-y$ and over the rectangle R given the $R=[(x,y);0\leq x\leq 1,0\leq y\leq 2]$
- (c) Find the power series expansion for the function $f(x) = (1+x^2)^5 \cos x$ [5 marks]

QUESTION FIVE (20 MARKS)

[8 marks]

(a) Use the comparison test to determine the convergence of the series [5 marks]

MATH 321

$$\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$$

[5 marks]

- (b) Calculate the moments of the triangle bounded by the lines $y=x-1, x=0 \land y=0$ having density e(x,y)=xy [9 marks]
- (c) Find the Taylor series for f(x)=Inx about x=1 and use it to approximate the value of 1.1

[6 marks]
