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Abstract 
 

Rainfall is of critical importance for many people, particularly those whose livelihoods depend on rain-
fed agriculture. Predicting the trend of rainfall is a difficult task, and statistical approaches such as time 
series analysis provide a means for predicting the patterns of rainfall. The models also offer the potential 
to improve areas such as increased food production, profitability, and improved food security policing. 
However, these forecasts and information systems may, in some instances, not be suitable for direct use 
by stakeholders in their decision-making. The objective of this study was to investigate rainfall variability 
and develop a Seasonal Auto-Regressive Integrated Moving Average (SARIMA) model for fitting the 
monthly rainfall using time series data. Secondary monthly data from 1998 to 2017 for Embu County was 
collected from the Kenya Meteorological Department, Embu and recorded into an excel sheet. R-software 
was utilized to analyse data for descriptive statistics, rainfall variability, and model fitting. The coefficient 
of variation for annual and seasonal rainfall was calculated. The Box Jenkin's ARIMA modelling 
procedure (model identification, model estimation, model validation) was used to determine the best 
models for the data. The main study findings indicated the existence of annual variability of 34%, March-
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April-May rainfall variability of 44%, and October-November-December variability of 44%. A first-order 
differenced SARIMA (1, 1, 1) (0, 1, 2)12 model with an AIC score of 9.99356 was found suitable for 
predicting rainfall pattern in Embu, County. The study outcome revealed that Embu County experiences 
high seasonal and rainfall variation of rainfall, thus requires a reliable model for better prediction.   
 

 
Keywords: Rainfall forecastin; time series analysis; SARIMA; residual analysis. 
 

1 Introduction 
 
Seasonal rainfall forecasts are critical in rain-fed farming regions. In Africa, particularly in rural areas, the 
primary source of livelihood is agriculture that relies on rainfall. Empirical studies among African farmers 
have revealed that climate forecasts are capable of helping farmers to reduce their vulnerability to drought 
and adverse effects of climate change [1]. The predictions can also allow subsistence farmers to maximize 
opportunities when favorable rainfall conditions are predicted and used to make decisions. The assessment 
of the potential of statistical forecasts in natural phenomena such as rainfall has ignited scientific and 
institutional processes for developing and disseminating climate forecasts in Africa.   

 
Kenya's socio-economic activities to a greater extent depend on rainfall performance and distribution [2, 3] 
with about 68% of these activities being weather and climate dependent. Approximately 60% of the world 
population is affected by low rainfall or altogether drought.  About 630 million people in Africa live in Arid 
and semi-arid areas, which receive low or no rainfall and mainly engage in rain-fed subsistence farming for 
their livelihoods [2]. Arid and semi-arid areas in Kenya provide a home to about 30% of the human 
population and 50% of its livestock population [4]. These areas receive low and erratic rainfall that is highly 
variable both in time and space, causing severe food shortages and deaths of livestock [5]. Huho and 
Mugalavai [2] argue that agriculture supports about 75% of the Kenyan population and generates almost all 
the country’s food requirements [6].  

 
Wang et al. [7] used a seasonal autoregressive moving average (SARIMA) model to simulate and forecast 
the seasonal precipitation series of Shouguang city, China. In their study they identified and fitted the data to 
four models namely SARIMA (2, 0, 2) (1, 1, 1)12, SARIMA (2, 1) (1, 1, 1)12, SARIMA (1, 1) (1, 1, 1)12 and 
MA (12). After comparing the models based on available information criteria, they have argued that 
SARIMA (2, 0, 2) (1, 1, 1)12 is the better one and used it for forecasting. Given an extensive time-series data 
set, ARIMA and SARIMA methods show high forecast accuracy. Adede [8] used Autoregressive (AR), 
moving average (MA), autoregressive moving average (ARMA) and autoregressive integrated moving 
average (ARIMA) models to analyse annual rainfall of Debre Markos Town, Ethiopia. In his study, he 
identified AR (2), MA (1) and ARMA (2, 1) to be capable in describing annual rainfall time series.  He 
further argued that ARIMA (2, 1) was the best fitting model for modelling and yearly rainfall forecasting. 

 
Application of other linear stochastic methods has also resulted in inaccurate predictions, clearly indicating 
that linear statistical models do not accurately represent historical data and hence are not acceptable methods 
for a non-linear application such as flood forecasting [9]. Mohamed and Ibrahim [10] used linear stochastic 
models based on multiplicative SARIMA to simulate monthly rainfall data of Nyala station in Sudan. They 
carried out a first-order seasonal differencing to remove seasonality in the data and found that SARIMA 
(0,0,0)x(0,1,1)12 model developed was the best fitting model to the monthly rainfall simulated data.  
Papalaskaris et al. [11] applied stochastic time series models in forecasting rainfall patterns and trend of 
Kavala city, Greece. In their study, they found that among all the SARIMA models fitted SARIMA [(0, 0, 0) 
x (0, 1, 1)12] model best fitted the total recorded monthly rainfall data of Kavala city in the period 2006 to 
2014. Khan et al. [12] proposed models SARIMA(0,0,0)(1,0,3)12, SARIMA(0,0,0)(1,0,1)12, 
SARIMA(0,0,0)(1,0,2)12 and SARIMA(0,0,0)(1,0,1)12 for maximum and minimum temperature, rainfall, and 
humidity on the basis of Akaike Information Criteria and Log likelihood have been  captured most 
seasonality of the data.  
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Afrifa-Yamoah et al. [13] used SARIMA models to fit rainfall patterns with data collected from the 
Department of Meteorology and Climatology in Ghana. The result showed that the region experienced much 
rainfall in September and October and the lowest amount of rainfall in January, December, and February.  
SARIMA (0, 0, 0), (1, 1, 1)12, was identified as the most appropriate model for prediction of monthly 
average rainfall figures for the Brong Ahafo Region of Ghana. Sopipan [14] forecasted rainfall in Thailand 
using SARIMA and Artificial Neural Network (ANN) models had been used to predict atmospheric 
variables, including precipitation in Kenya. Valipour [15] studied the ability of the seasonal autoregressive 
integrated moving average (SARIMA) and autoregressive integrated moving average (ARIMA) models in 
investigating long-term runoff forecasting in the United States. In the first stage, the amount of runoff was 
predicted for 2011 in each US state using the data from 1901 to 2010. The results revealed that the accuracy 
of the SARIMA model is better than that of the ARIMA model.  
 
The Box-Jenkins Seasonal ARIMA (SARIMA) model has several advantages over other models, particularly 
over exponential smoothing and neural network, due to its forecasting capability and richer information on 
time-related changes [10]. Kibunja et al. [16] studied the effectiveness of SARIMA model in forecasting 
precipitation in Mount Kenya region and concluded that the model was good. Kibunja et al. [16] studied the 
effectiveness of the SARIMA model in forecasting precipitation in the Mount Kenya region and concluded 
that the model was good. Kane and Yusof [17] also analyzed the precipitation forecast using a SARIMA 
model in Golestan province and found the seasonality measure in SARIMA to be highly useful in modelling 
precipitation. The general aim of this study was to investigate rainfall variability and apply a Seasonal Auto-
Regressive Integrated Moving Average (SARIMA) model for fitting the monthly rainfall using time series 
data in Embu County. 
 
This paper is organized as follows: Section 2 gives the source of data and methodology, including a brief 
overview of SARIMA models. Section 3 provides data analysis and discussion of results. Section 4 ends the 
paper with some concluding remarks. 
 

2 Materials and Methods 
 
2.1 Autoregressive AR process 
 
Let Yt be a discrete time series variable, which takes different variable over a period of time. The 
corresponding AR (p) model of Yt series, which is the generalizations of the autoregressive model, is 
expressed as; 
 

 �� = �� + ������ + ������ + ⋯ + �� ���� + ��                      (1) 
 

Where Yt is the response variable at time  ��,����,���� … ���� are the respective variables at varying time 

lags, ��,��,��,… ��are the coefficients and �� is the error factor or white noise. Introducing a lag operator B 
the equation becomes  
 

���(1 − ∅�(� )− ∅��� … − ��� � )�� = ∅� (�)�� = ��               (2) 
 

It can be shown that subject to the restriction �� being independent of   ��,����,���� … ����  and that ��
� > 0, 

the solution of AR(p) defining equation (1) will be stationary if and only if |� |< 1.   
 

2.2 Moving average process 
 
MA (q) model, which is the generalization of the moving average model, is specified as; 
 

�� = �� + ������ + ������ + ⋯ + ������ + ��                (3) 
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In which ��~ �� (0,��
�) and �� is the error term. The process uses past errors in predicting the variables in 

which the residuals are assumed to follow a normal distribution. Introducing a lag operator B to the equation, 
it becomes   
 

���(1 − ��(�)− ⋯ − �� � �)�� = �� (�)��                 (4) 

 
It can be shown that MA(q) model is invertible if there are coefficients �� such that  
 

�� = ������ + ������ + ������ + ⋯ + ��                (5) 
 
if, and only if, the roots of the MA characteristic equation exceed 1 in modulus. 
 
Above equation (3) representing MA (q) process is always stationary. In fact MA process is inverse of AR 
model. The MA model is invertible if an MA model can be expressed as autoregressive (infinite order) 
model. 
 

2.3 Autoregressive integrated moving average (ARIMA) process 
 
ARMA models may not be adequate to effectively describe the non-stationary time series, which are more 
frequently encountered in actual practice. The ARIMA model, which is a generalization of an ARMA model 
to include the case of non-Stationarity, is more appropriate. When using the ARIMA model, finite 
differencing is applied to the data to remove non-stationarity. When (�� ) in the data is replaced with              
(∆��  = �� − ����  ), then the ARMA models become the ARIMA (p,d,q) models, where p is the order of 
autocorrelation (Indicates weighted moving average over past observations), d is the order of integration 
(differencing) and q is the order of moving averaging. By combining the models in (1) and (2), this is 
referred to as ARMA to model, which have the general form of; 
 

�� = ��  + ��  ����  + � � ����  + ⋯ + �� ���� + �� + ��  ���� + ⋯ + �������                            (6) 
 

If ��  is stationary at level d(0) or at first difference d(1), then this determines the order of integration. To 
identify the order of p and q, the ACF and PACF are applied. For this study, the ARIMA model �� = ��  +
��  ����  where �� is rainfall in millimeters, ��  is the intercept and ��  is time in months was used. An 

ARIMA(p,d) process given by equation (6) is said to be invertible if there exist constants ���� such that 

∑ ����∞
��� < ∞ and  

 
�� = ∑ ��

∞
��� ����   ��� ��� �.                  (7) 

 

2.4 SARIMA models 
 
SARIMA models are an adaptation of autoregressive integrated moving average (ARIMA) models to fit 
seasonal time series specifically. That is, their construction takes into account the underlying seasonal nature 
of the series to be modelled. Seasonality in a time series refers to a regular pattern of changes that repeats 
over in time-periods, where S defines the number of time-periods until the pattern repeats. For monthly 
rainfall data S = 12. In a seasonal ARIMA model, seasonal AR and MA terms predict xt using data values 
and errors at times with lags that are multiples of S (the span of the seasonality). The seasonal ARIMA 
model incorporates non-seasonal and seasonal factors in a multiplicative model and is denoted as  
 

ARIMA (p, d, q) × (P, D, Q)S,    
 

Where p = non-seasonal AR order, d = non-seasonal differencing, q = non-seasonal MA order, P = seasonal 
AR order, D = seasonal differencing, Q = seasonal MA order, and S = time span of repeating seasonal 
pattern. 
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Without differencing operations, the model can be written as 
 

Φ(��)φ(�)(�� −  μ) =  Θ(��)θ(�)��                                                           (8) 
 

The non-seasonal components are: 
 

AR:  φ(�) =  1 −  φ1� −  . . . −  φ���                                                                         (9) 
 

MA:  θ(�) =  1 +  θ1�  + . . . + θ���                                                 (10) 
 

The seasonal components are: 
 

Seasonal AR:    Φ(��) =  1 −  Φ1�� −  . . . −  Φ����                                                           (11) 
 

Season MA:  Θ(��) =  1 +  Θ1�� + . . . + Θ����                                                                             (12) 
 

For stationarity and invertibility, it is well known that the zeroes of Φ(��) and Θ(��)  must lie outside the 
unit circle respectively.   
 

2.5 Model identification in SARIMA 
 
The first step of applying the model is to identify the appropriate order of ARIMA (p,d,q) model. 
Identification of the ARIMA model involves selection of the order of AR(p), MA(q) and I(d). The order of d 
is estimated through I(1) or I(0) process. The model specification and selection of order p and q involves 
plotting of ACF and partial PACF or correlogram of variables at different lag lengths. Box-Pierce Q 
statistics and Ljung-Box LB statistics measures the significance level of individual coefficients. The Box-
Pierce Q statistics is defined as; 
 

� = ∑ ��
���

��� ~ ��
�                                   (13) 

 
Where n=sample size and m is lag length.  And Ljung Box (LB) Statistics is defined by 
 

�� = �(� + 2)∑
��

��

���

�
��� ~ ��

�                                (14) 

 
Where n=sample size and m is the lag length of the date. The possible SARIMA model that best fit the data 
under consideration is determined by selection criteria. SARIMA model is appropriate for stationary time 
series; therefore, the data under consideration must satisfy the condition of stationarity that is the mean, and 
variance and autocorrelation are constant over time. 
 

2.6 Parameter estimation SARIMA 
 
To estimate SARIMA models, the ML method is used. Under the assumption of independent and distributed 
standardised ��, the log-likelihood (LL) function of {��(�)} for a Τ observations sample, is given by: 
 

ln �[(��),�] = ∑ ���[�(��(�),�)] −
�

�
��[��

�(�)]��
���                (15) 

 
where, � is the vector of the parameters that have to be estimated for the conditional mean, conditional 
variance, and density function.  ��  is a sequence of independent and distributed random variables with mean 
as zero and variance as one. The approach of maximum likelihood (ML) requires the specification of a 
particular distribution for a sample of T observations ��. 
 

�(��,����,… ,�� = ��)= �(����,… ��|�)               (15) 
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denote the probability density of the sample given the unknown parameters (� × 1) parameters �. Following 
the notation of Box and Jenkins, �(�|�) with respect to derivatives to zero and using vector notation and 
suppressing y the result becomes part of the unknown parameters of the vector  � the notation is the most 

appropriate. Setting the 
�(� )

��
= 0  

 
As a rule, the likelihood equations are non-linear. Therefore, the ML estimates must be found in the course 
of an iterative procedure. 
 

2.7 Model diagnostic checking for SARIMA model 
 
After estimating the parameters of our chosen model, the last step is model diagnostics. At this stage, we 
determine the adequacy of the selected model. One assumption of the SARIMA model is that the residuals 
of the model should be white noise. The ACF of the residuals is approximately zero when the residuals are 
white noise. Ljung-Box statistic proposed by Ljung and Box [18] is used to check if a given observable 
series is linearly independent. The test examines the null hypothesis of linear independence of the series.   
 

2.8 Forecasting with the SARIMA model 
 
Forecasting is the process of making a statement about events whose actual outcomes have not yet been 
observed. It is an important application of time series. After the model has passed the entire diagnostic test, it 
becomes adequate for forecasting, which the last step is in Box-Jenkins model building approach. For 
instance, let us consider the given Seasonal ARIMA (0, 1, 1) (1, 0, 1)12 we can forecast the next step which 
is given by Cryer and Chan [19]. 
 

�� − ���� = Φ(����� − �����)+ �� − ����� − Φ����� + ������ 
�� = ���� + Φ����� − Φ����� + �� − ����� − Φ����� + ������                          (16) 

 
The one step ahead forecast from the origin t is given by 
 

�̂��� = �� + Φ����� − Φ����� − ��� − Φ����� + ������                           (17) 
 

The next step is 
 

�̂��� = �̂��� + Φ����� − Φ����� − Φ����� + ������                                         (18) 
 

and so on. The noise term ���,���,���,… . ,�� (as residuals) will enter into the forecasts for lead times� =
1,2,… ,13, but for � > 13 the autoregressive part of the model takes over; 
 

�̂��� = �̂����� + Φ������� − Φ�������,��� � > 13              (19) 
 

2.9 Forecasting performance 
 
The accuracy for each model can be checked to determine how the model performed in terms of in-sample 
forecast. In terms of out sample forecasting, some of the observations are left out during model building. The 
accuracy of the model can be compared using forecast measure or some statistic such as mean error (ME), 
root mean square error (RMSE), mean absolute error (MAE), mean percentage error (MPE), mean absolute 
percentage error (MAPE), and mean square error (MSE) among others [19]. The model with the minimum 
of MAE, MAPE, or RMSE is considered to be the best for forecasting. The mathematical expressions are 
defined as:  
 

��� =
�

�
∑ |��� − ��|�

��� =
�

�
∑ |��|�

���                                           (20) 
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��� =
�

�
∑ (��� − ��)��

��� =
�

�
∑ (��)��

���                                               (21) 

 

���� = �
�

�
∑ (��� − ��)��

��� = �
�

�
∑ (��)��

���                                            (22) 

 

���� =
�

�
∑ �

������

��
��

��� × 100%                                                        (23) 

 
Where yt is the actual observation, ���is fitted, or the forecast value and T is the sample size. If we have 
perfect forecast then MAE = MSE = RMSE = 0. The smaller the value, the better the prediction, and the 
great the value, the poorer the predictive power of the model. 
 

2.10 Data source 
 
The study covered Embu County, Kenya located approximately between latitude 0°8’ and 0°50’ South and 
longitude 37°3’ and 37°9’ East. The county is on the South-eastern side of Mount Kenya. Embu County 
borders Tharaka-Nithi to the North, Machakos to the South, Kirinyaga, and Muranga to the West, and Kitui 
to the East [20]. The county's location is at the foothill of Mount Kenya and altitude of between 1179 
and1350 meters above the sea level. It records an approximate temperature ranging between 9°C – 28.8°C 
and 640mm and 1206mm of average rainfall annually [21]. Rainfall in Embu County is bimodal with short 
rains from mid-October to December and the long rains from March to May. This indicates that the region 
has two cropping seasons every year with the main crops being maize, beans, and livestock rearing. The 
lower parts of Embu, which includes Mbeere Sub-county, experience more moderate rainfall of between 
640mm and 781 mm annually that supports the growth of crops such as green grams, cowpeas, beekeeping, 
livestock rearing, and Miraa farming. Embu County produces about 20 percent of the nation’s maize due to 
its fertile Nitosols. 
 
The county’s population is about 516,212 persons and experiences an annual growth rate of about 1.7% per 
year, according to the Kenya Population and Housing Census 2009 [20]. The population density is 
approximately 82 persons per square kilometre, with many households owning less than 5.0 hectares of land 
[20]. The projected population in 2017 is 519,415, indicating the need for increased agricultural production 
to support the people. The county is an agricultural region with the people depending on farming and 
livestock rearing as the main economic activities, as 70% of the residents engage in small-scale farming. The 
food crops include maize, beans, cassava, sweet and iris potatoes, bananas, and sorghum, among others. 
Cash crops include coffee, tea; macadamia, and dairy farming (Kenya Ministry of Lands & Physical 
Planning 2016). Thus, rainfall plays a significant role in the survival of the residents since most of them are 
subsistence producers. Cash crops produced in the county include tea and coffee, although some people 
practice daily farming. 
 

3 Results and Discussion 
 
Descriptive statistics obtained for various rainfall patterns in Embu County reveal that the highest annual 
rainfall sum recorded was 1824.2 mm in 2002 and the lowest is 79.6 mm in 2003 (Table 1). The highest 
monthly rainfall is 820.70 mm in 2002 Table 2 and Fig. 2. Some months recorded no rainfall such as 
January, February, June, and September 2003 (Fig. 2). In addition, the months of March, April, and May 
recorded high rainfall totals during the first season while October and November received high rainfall totals 
in the second part of the year. 
 
The month of April recorded the highest amount of rainfall, followed closely by March while the months of 
January and February recorded the least amount of rainfall. August received low amount except in 2013 
when the rainfall totalled 543mm, which was an abnormal amount compared to the rest of the years (Table 
1). The study reveals presence of variability of rainfall distribution over years in the area under study (Fig. 
3). However, no particular trends are traced on the monthly or annual rainfall. 



Fig
 

 

Fig. 
 

 

Fig. 3. Seasonal distribution of rainfall in Embu 
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Fig. 1. Embu county Map agroecology 

  
 2. Plot of monthly-time rainfall data 

Fig. 3. Seasonal distribution of rainfall in Embu County 

 
 
 

; Article no.AJPAS.50481 
 
 
 

8 
 
 

 

 

 



 
 
 

Filder et al.; AJPAS, 4(4): 1-15, 2019; Article no.AJPAS.50481 
 
 
 

9 
 
 

Table 1. Monthly descriptive statistics 
 

Month N Minimum Maximum Mean Std.dev 
January 20 0 166.7 37.605 46.71566 
February 20 0 164.7 32.16 41.57626 
March 20 3.2 197.1 95.79 64.92672 
April 20 60.1 820.7 265.45 165.2701 
May 20 1.9 499 180.775 127.9435 
June 20 0 144 33.605 35.81813 
July 20 3.7 69.8 31.13 18.01766 
August 20 13.9 543 60.24 114.5205 
September 20 0 100.6 25.755 26.40563 
October 20 10.2 323.3 152.56 105.8849 
November 20 0.7 446.1 229.43 109.9802 
December 20 2 291.6 70.675 76.02191 

 

Analysis of March-April-May (MAM) and October-November-December (OND) rainfall indicated that the 
MAM season received the highest amount of rainfall (Table 2). Seasonal variability analysis for the MAM 
and OND rainfall showed irregular rainfall patterns in the study area with the coefficient of variability for 
MAM and OND classified as high each with a value of 44% percent. Similarly the coefficient of variation 
for annual rainfall is also high with a value of 34% (Tables 2 & 3).  
 

Table 2. Coefficient of variation for MAM and OND (STD/Mean) 100% 
 
 N Mean STD Deviation CV      Sum 
MAM Rainfall 20 536.0050 235.33624  44%     10720.1 
OND Rainfall 20 416.1650 182.80410  44%     8323.3 

The coefficients of variation are 0.44 for MAM and OND amount, which is classified as high 
 

Table 3. Variability test for mean annual rainfall totals from 1988 to 2017 
 

 N Mean Std. Deviation CV        Sum 
Rainfall 20 1199.4750 404.85692 34%       23989.5 

 

The coefficients of variation were concluded based on the Hare [22] provisions of rainfall variability 
coefficients. The irregular patterns in the two seasons make it difficult for farmers to make decisions on the 
type of agricultural practices to engage in. Annual rainfall is also highly variable with a coefficient of 
variation of 34 percent making it a challenge for stakeholders such as county planners, businesspersons, and 
other agricultural officials to make reliable decisions. The results are in agreement with Kisaka et al. [23] 
study that examined the extent of seasonal rainfall variability using rainfall anomaly index, coefficient of 
variance, and probability analysis. According to this research Embu showed a 90 percent chance of below 
cropping threshold rainfall. The research also showed a high seasonal variability of 0.56, 0.47, 0.59, and 
0.36 in regions such as Machang’a, Kiritiri, and Kindaruma, and Embu.  
 

Fig. 4, shows that the rainfall data is random as it gives rise to lag plots with no pattern. The points in the lag 
plot appear scattered from left to right and top to bottom thus there is no significant autocorrelation.  
 

3.1 Model identification 
 
The best model is the one with the lowest value of BIC. The best model for rainfall is SARIMA (1, 1, 1) (0, 
1, 2)12 with a BIC of 9.051574. The (1, 1, 1) (0, 1, 2)12 describes a model that includes 1 non-seasonal 
autoregressive parameters 1 non-seasonal moving average parameter and 1 non-seasonal difference. It also 
indicates 1 seasonal moving average parameter and one seasonal difference. These parameters were 
computed for the series after it was differenced once with lag 1. The seasonal lag used for the seasonal 
parameters is usually determined during the identification phase and must be explicitly specified [24]. 
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Fig. 4. Scatter plot at various lags 
 

Table 4. AIC, AICc , and BIC values of selected models 
 
Model  DF AIC AICc BIC 
SARIMA (0,0,1),(0,0,1)12 237 10.3919 10.4010 9.435496 
SARIMA (1,0,0),(0,0,1)12 237 10.4163 10.4253 9.459755 
SARIMA(0,0,0),(0,0,1) 12 238 10.4579 10.46667 9.486917 
SARIMA (1,0,0),(0,0,2)12 236 10.4007 10.41012 9.458732 
SARIMA (2,1,1),(1,0,1)12 233 10.0306 10.04093 9.117599 
SARIMA (1,1,1),(0,1,1)12 224 9.99594 10.00498 9.039445 
SARIMA (1,1,1),(0,1,1)12 222 10.0284 10.0382 9.100876 
SARIMA (1,1,1),(1,1,2)12 223 9.99670 10.0061 9.054712 
SARIMA (1,1,1),(1,1,2)12 224 10.4947 10.50381 9.538272 
SARIMA (1,1,1),(0,1,2)12 223 9.99356 10.00296 9.051574 

Parameter Estimation: Maximum likelihood estimates of the SARIMA (1, 1, 1) (0, 1, 2)12 
 

Table 5. MLE Estimates of SARIMA (1, 1, 1), (0, 1, 2)12 

 
 Estimate STD Error T-value P-value 
Intercept  0.0049 0.0026 1.9094 0.0574 
AR1 0.1452 0.0673     2.1580   0.0320 
MA1 -1.0000 0.0033 -30.0729   0.0000 
SMA1 -1.0671 0.1364    -7.8231   0.0000 
SMA2 0.0671 0.0824    0.8150   0.4159 

sigma^2 estimated as 7787,   log likelihood = -1362.28,  AIC = 2734.56 
 

SARIMA (1, 1, 1) (0, 1, 2)12 has an estimated variance of 7787 with a log likelihood of -1362.28 and AIC is 
2734.56. The parameters were estimated according to the maximum likelihood technique; thus, results are in 
agreement with [24] literature on time series modelling. Parameters are estimated through methods such as 
method of moments and maximum likelihood (Box, 2015). The MLE was used in this case to find the order 
of p, d, and q. In SARIMA (1, 1, 1) (0, 1, 2) 12, AR=1, MA=1 in a first differenced series. SAR=0, SMA=2, 
and Seasonal difference =1. The rule of parsimony requires a researcher to select the simplest model, which 
adequately explains the behaviour of the values, as explained by Chen et al. [25]. The SARIMA parameter 
estimates indicate that the ARIMA models with seasonal components are best fit among different models to 
forecast rainfall. Seasonality usually causes the series to be non-stationary because the average values at a 
particular time within the seasonal span are different from average values at other times. 



 
Fig. 5. Diagnostic Analysis: Residuals for SARIMA (1, 1, 1), (0, 1, 2)

3.2 Model validation 
 
To test the adequacy and predictive ability of the chosen models, the actual data sets, predicted values, lower 
and upper limits are plotted and displayed. The predictive power of SARIMA (1, 1, 1) × (0, 1, 2)
appreciable since it fits well to the test data since all points lie within the confidence interval. The forecasted 
Figures tend to be very close to the actual points.
line and dots compared to the test dataset of January 2018 to December 2020 in the region. The 95% 
confidence interval is overlaid in the grey area.
 

3.3 Forecasting 
 
Once the better model was selected, two
for (1, 1, 1) × (0, 1, 2)12 function of astsa
on the chosen ARMA model. Fig. 6
error prediction bounds. The mean absolute percentage error (MAPE) of the forecast was 9.0% (Table 6). 
Hence the model can be considered as a better predictor.
 

Table 6. Forecasting accuracy statistic 

Model  
SARIMA (1,1,1),(0,1,2)12 

 
The MAPE gives a very low value of 9.0%, indicating that the SARIMA (1, 1, 1) (0, 1, 2)
the monthly data for Embu County. Thus, the model can be used for rainfall prediction in th
reliable accuracy. This is in agreement with the study by Chatfield 
a good measure of the accuracy of the model and its predictability of the response. For prediction models, 
MAPE is an important criterion for determining the fit. Forecasting helps in planning and decision
process since it gives an insight into the future uncertainty using the past and current behaviour of given 
observations. From most research studies, the selected model is not 
accuracy test by the MAPE must, therefore, be carried out on the model. Lower values of MAPE indicate 
better fit [26]. MAPE is a good measure of how accurately the model predicts the response, and it is the most 
important criterion for fit if the main purpose of the model is the prediction. 
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lected, two-year a head prediction was conducted. For this purpose, SARIMA 
astsa package was used. This function produced predicted values based 

6 shows the resulting prediction plot along with one and two standard 
error prediction bounds. The mean absolute percentage error (MAPE) of the forecast was 9.0% (Table 6). 
Hence the model can be considered as a better predictor. 

accuracy statistic (Mean absolute percentage error(MAPE)
 

MAPE 
9.0% 

The MAPE gives a very low value of 9.0%, indicating that the SARIMA (1, 1, 1) (0, 1, 2)12 adequately fits 
the monthly data for Embu County. Thus, the model can be used for rainfall prediction in th
reliable accuracy. This is in agreement with the study by Chatfield [26] that a lower value of MAPE provides 
a good measure of the accuracy of the model and its predictability of the response. For prediction models, 

rion for determining the fit. Forecasting helps in planning and decision
process since it gives an insight into the future uncertainty using the past and current behaviour of given 
observations. From most research studies, the selected model is not always the best for forecasting. Further 
accuracy test by the MAPE must, therefore, be carried out on the model. Lower values of MAPE indicate 

. MAPE is a good measure of how accurately the model predicts the response, and it is the most 
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To test the adequacy and predictive ability of the chosen models, the actual data sets, predicted values, lower 
re plotted and displayed. The predictive power of SARIMA (1, 1, 1) × (0, 1, 2)12 is very 

appreciable since it fits well to the test data since all points lie within the confidence interval. The forecasted 
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error(MAPE) 
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the monthly data for Embu County. Thus, the model can be used for rainfall prediction in the region with 

that a lower value of MAPE provides 
a good measure of the accuracy of the model and its predictability of the response. For prediction models, 

rion for determining the fit. Forecasting helps in planning and decision-making 
process since it gives an insight into the future uncertainty using the past and current behaviour of given 
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. MAPE is a good measure of how accurately the model predicts the response, and it is the most 



 
 
 

Filder et al.; AJPAS, 4(4): 1-15, 2019; Article no.AJPAS.50481 
 
 
 

12 
 
 

Table 7. A sample of rainfall forecasts for the SARIMA (1, 1, 1) (0, 1, 2)12 
 

Year Point forecast Low 99.5% CI High 99.5% CI Month  Year Point Forecast Low 99.5% CI High 99.5% CI 
2018 34.66828 -220.894 290.2309 Jan 2020 44.43287 -214.687 303.5529 
2018 36.60022 -222.093 295.2931 Feb 2020 39.30592 -219.846 298.4578 
2018 106.7261 -152.099 365.5508 Mar 2020 103.4251 -155.731 362.5809 
2018 281.1887 22.35154 540.0258 Apr 2020 273.743 14.58656 532.8994 
2018 182.8405 -75.9983 441.6793 May 2020 187.5799 -71.5766 446.7364 
2018 42.10109 -216.738 300.9401 Jun 2020 41.18722 -217.969 300.3437 
2018 38.64529 -220.194 297.4843 Jul 2020 38.71256 -220.444 297.8691 
2018 68.91899 -189.92 327.7581 Aug 2020 68.00157 -191.155 327.1581 
2018 31.51366 -227.326 290.3528 Sep 2020 33.41306 -225.744 292.5697 
2018 155.5851 -103.255 414.4248 Oct 2020 160.5562 -98.601 419.7134 
2018 234.8791 -23.9642 493.7224 Nov 2020 237.0093 -22.1516 496.1703 
2018 83.59515 -175.268 342.4581 Dec 2020 79.55008 -179.632 338.7325 
2019 44.5844 -214.152 303.3205 Jan 2021 45.04701 -214.538 304.6316 
2019 38.80295 -219.924 297.5295 Feb 2021 39.92006 -219.698 299.5385 
2019 102.8271 -155.898 361.552 Mar 2021 104.0392 -155.584 363.662 
2019 273.1312 14.40642 531.8559 Apr 2021 274.3571 14.73375 533.9805 
2019 186.9661 -71.7586 445.6909 May 2021 188.1941 -71.4294 447.8175 
2019 40.57312 -218.152 299.2979 Jun 2021 41.80136 -217.822 301.4248 
2019 38.09843 -220.626 296.8232 Jul 2021 39.3267 -220.297 298.9502 
2019 67.38743 -191.337 326.1122 Aug 2021 68.61571 -191.008 328.2392 
2019 32.79892 -225.926 291.5237 Sep 2021 34.0272 -225.596 293.6508 
2019 159.9421 -98.7833 418.6674 Oct 2021 161.1704 -98.4538 420.7945 
2019 236.3952 -22.3336 495.124 Nov 2021 237.6235 -22.0048 497.2517 
2019 78.93594 -179.812 337.6842 Dec 2021 80.16422 -179.488 339.8161 
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Fig. 6. Prediction of SARIMA (1, 1, 1) × (0, 1, 2)12 
 

4 Conclusion 
 
In this study, the monthly time series rainfall data of Embu, County in Kenya was investigated. A logical 
procedure was followed in the search for a better stochastic model that could better explain the interesting 
features contained in the annual series.  Among ten statistically competent SARIMA models, a first order 
seasonal differenced SARIMA (1, 1, 1) (0, 1, 2)12.model was found suitable for fitting rainfall data in Embu, 
County. Furthermore, the model can be used as a potential alternative for the prediction of annual rainfall 
values. Finally, as a recommendation, other stochastic models should be investigated to see if other models 
can also preserve long term statistical behaviour of annual rainfall in Embu, County. Besides, seasonal 
behaviour of the town's monthly rainfall should also be explored.  
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