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Abstract  Breast cancer is the leading type of cancer among women worldwide, with about 2 million new cases 
and 627,000 deaths every year. The breast tumors can be malignant or benign. Medical screening can be used to 
detect the type of a diagnosed tumor. Alternatively, predictive modelling can also be used to predict whether a tumor 
is malignant or benign. However, the accuracy of the prediction algorithms is important since any incidence of false 
negatives may have dire consequence since a person cannot be put under medication, which can lead to death. 
Moreover, cases of false positives may subject an individual to unnecessary stress and medication. Therefore, this 
study sought to develop and validate a new predictive model based on binary logistic, support vector machine and 
extreme gradient boosting models in order to improve the prediction accuracy of the cancer tumors. This study used 
the Breast Cancer Wilcosin data set available on Kaggle. The dependent variable was whether a tumor is malignant 
or benign. The regressors were the tumor features such as radius, texture, area, perimeter, smoothness, compactness, 
concavity, concave points, symmetry and fractional dimension of the tumor. Data analysis was done using the R-
statistical software and it involved, generation of descriptive statistics, data reduction, feature selection and model 
fitting. Before model fitting was done, the reduced data was split into the train set and the validation set. The results 
showed that the binary logistic, support vector machine and extreme gradient boosting models had predictive 
accuracies of 96.97%, 98.01% and 97.73%. This showed an improvement compared to already existing models. The 
results of this study showed that support vector machine and extreme gradient boosting have better prediction power 
for cancer tumors compared to binary logistic. This study recommends the use of support vector machine and 
extreme gradient boosting in cancer tumor prediction and also recommends further investigations for other 
algorithms that can improve prediction. 
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1. Introduction 

Cases of breast cancer diagnosis and mortality have 
grown over the years across the world. This has been 
attributed to changes in lifestyles as well as hormonal 
changes [1]. Mortalities from breast cancer have been 
attributed to late diagnosis as well as challenges in access 
to treatment. Studies have proposed increased campaign 
on self-examination that will facilitate early diagnosis 
which willing turn help in control and treatment of breast 
cancer [8]. Breast cancer is caused by the buildup of extra 
cells of the on the breast causing a mass tissue that is 
usually referred to as a lump or a tumor. A tumor on the 
breast can either be malignant or begnin [3]. A benign 
tumor is not cancerous while a malignant tumor is 

cancerous. Benign tumors are harmless and they do not 
cause an invasion to tissues next to them and neither do 
they spread to other body parts. When a benign tumor is 
removed, it does not grow back again. On the other hand 
malignant tumors are dangerous and they can affect the 
tissues next to them. These tumors can also spread to other 
body parts and even when they are removed, there is 
always a possibility that they will grow back [5]. 

Researchers have also tried to highlight some breast 
cancer risk factors. These include; gender, age, history, 
genes, radiations, ethnicity, overweight, breast feeding, 
alcoholism, nature of breasts, smoking, low levels of 
vitamin D, chemical exposure among others [2]. 
Prediction of whether a tumor is benign or malignant can 
be an important step in breast cancer control. This is 
because if a tumor is predicted to be malignant, early 
medication can be sought and thus the cancer can be 
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controlled before it gets to an advanced stage. However, 
the prediction accuracies and are very important since 
cases of false negatives may have dire consequences since 
somebody cannot be put under medication and this can 
lead to deaths. Cases of false positives can subject to 
unnecessary stress and medication. therefore, it is important 
to develop an algorithm that can predict if a tumor is 
begnin or malignant with the best accuracy as possible. 

Several studies have come up with prediction algorithms 
for breast cancer, and have attained different prediction 
accuracies. For example a study that investigated whether 
breast cancer was caused by modifiable or non-modifiable 
factors using the Rep Tree, RBF Network and using simple 
logistic attained a classification accuracy rate of 74.5% [4]. 
The non-modifiable factors considered were age, menustrial 
history, gender, age at menopause, age at menarche and 
number of first degree relatives who have suffered from 
breast cancer. The modifiable factors were BMI, number 
of children, alcoholism, diet, age at first birth and number 
of abortions. Prediction of whether a tumor was benign or 
malignant using Naïve Bayes, SVM-RBF kernel, decision 
tree, neural networks and regression tree produced the 
SVM-RBF kernel with an accuracy of 96.84% [5], when 
prediction of benign and malignant breast cancer was done 
using data mining techniques, Naïve Bayes attained the 
best prediction accuracy of 97.73%. Application of 
Decision Trees, Naive- Bayesian methods, Sequential 
Minimal Optimization to detect breast cancer tumors, 
Sequential Minimal Optimization showed high level 
performance compare with other classifiers [4]. 

It is clear that prediction accuracies of the prediction 
algorithms vary according to the algorithm used. Further, 
these accuracies could also vary depending on the pre analysis 
performed on the data. Such pre analysis includes the data 
imputations and the data dimension reductions if the 
variables are correlated. This study therefore sought to 
investigate if the binary logistic, support vector machine 
and extreme gradient boosting improved the prediction 
accuracies of the begnin and malignant tumors. The 
algorithms were developed after performing data 
imputation and data dimension reduction using the 
principal component analysis.  

2. Methodology 
This study used the breast cancer data available on Kaggle. 

The dependent variable in the data is whether a tumor is 
benign or malignant. The predictor variables are features 
of tumor that includes; radius, texture, area, perimeter, 
smoothness, compactness, concavity, concave points, symmetry 
and fractional dimension of the tumor. The analysis of the 
data involved generation of descriptive statistics, performing 
data reduction and feature selection using the principal 
component analysis and then fitting the binary logistic, 
support vector machine and extreme gradient boosting 
models. The data was split into two where 70% formed 
the training data set and 30% formed the testing set. 

2.1. Principal Component Analysis 
This is a procedure that makes use of the orthogonal 

transformation to convert correlated variables into linearly 

uncorrelated variables that are referred to as principal 
components [7]. The first principal component has  
the largest possible variance and every subsequent 
component has the largest possible variance under the 
constraint that is orthogonal to the subsequent components. 
The end result is a vector of uncorrelated orthogonal basis 
set. 

Mathematically, the transformation; 

 𝑡𝑡𝑘𝑘(𝑖𝑖) =  𝑥𝑥(𝑖𝑖), 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 = 1,2,3, … . ,𝑛𝑛  

is a set of vectors of coefficients 𝑤𝑤(𝑘𝑘) = (𝑤𝑤1, … . ,𝑤𝑤𝑝𝑝)(𝑘𝑘) 
that map every row vector 𝑥𝑥(𝑖𝑖) of 𝑥𝑥 to a new vector scores 
of principal components 𝑡𝑡(𝑖𝑖) = (𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑎𝑎)(𝑖𝑖). 

This is done in such a way that the 𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑎𝑎  of  
𝑡𝑡 considered over the data set inherit maximum possible 
variance from 𝑥𝑥. 𝑤𝑤 is constrained to be a unit vector and 
the choice of 𝑎𝑎 is selected in such a way that it is less than 
𝑝𝑝 so as to reduce dimensionality.  

For maximum variance, the weight 𝑤𝑤(1) must satisfy; 
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Once 𝑤𝑤(1) is obtained, the first principal component is 
given as; 

 𝑡𝑡1(𝑖𝑖) =  𝑥𝑥(𝑖𝑖) ∙ 𝑤𝑤. 

The 𝑘𝑘𝑡𝑡ℎ  principal component can be obtained through 
subtracting the 𝑘𝑘 − 1 principal components from 𝑥𝑥. 

 𝑥𝑥�𝑘𝑘  = 𝑋𝑋 −  ∑ 𝑥𝑥𝑤𝑤(𝑠𝑠)𝑤𝑤(𝑠𝑠)
𝑇𝑇𝑘𝑘−1

𝑠𝑠=1 . 

The principal component analysis also helps in data 
dimension reduction while still retaining much of the 
variance in the data sets.  

2.2. Logistic Regression 
It is a generalized linear model that fits data that has a 

binary outcome. If the data has multiple classes, the 
logistic regression generalizes into a multinomial 
regression model (Sperandei, 2014). The logistic 
regression equation is; 
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Using the maximum likelihood estimation, the cost 
function can be derived as; 
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The 𝛽𝛽′𝑠𝑠 are obtained by minimizing the cost function. 
To solve the problem of over fitting when using a 

logistic regression, a regularized logistic regression is used. 
This is achieved by adding a regularization term to the 
cost function. The 𝐿𝐿1 regularization is achieved by adding 
a penalty that is equivalent to the sum of absolute values 
of the coefficients. That is;  
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To optimize 𝜆𝜆  cross-validation is used and the 𝜆𝜆  that 
yields the best cross-validation accuracy is chosen.  

2.3. Support Vector Machine 
This is an algorithm under supervised machine learning 

that is used for classification and regression. However, 
most of the times, it is used for classification [9]. To 
understand the working of support vector machine model, 
an example of a data is considered that has two classes 
that can be separated using a straight line which can also 
be referred to as the decision boundary or hyperplane 
(Figure 1).  

 
Figure 1. Data set with two classes that are separable using a straight 
line 

The point under consideration is which is the best line 
that can separate the two classes since there are multiple 
lines that can do the separation. This consideration leads 
to the concept of maximum margin classification. This 
means that the support vector machine finds the hyperplane 
that yields the largest margin between the two classes.  

Choosing the solid line as the hyperplane and margins 
as the dotted lines, the points (circled) that lie on the 
margin are referred to as support vectors (Figure 2).  

 
Figure 2. Diagrammatic representation of the support vectors 

The support vectors are the ones that are used by the 
support vector machine to obtain a decision boundary. The 

others points are not used. Since for this case the space is 
two dimensional, the equation for the separating line is; 

 𝛽𝛽0 + 𝛽𝛽1 + 𝛽𝛽2𝑋𝑋2 
When the equation evaluates to more than 0, then 1 is 
predicted. That is; 

 𝛽𝛽0 + 𝛽𝛽1 + 𝛽𝛽2𝑋𝑋2 > 0, 𝑦𝑦 = 1 

When the equation evaluates to less than 0, then -1 class is 
predicted. That is; 

 𝛽𝛽0 + 𝛽𝛽1 + 𝛽𝛽2𝑋𝑋2 < 0, 𝑦𝑦 = −1. 

This yields a maximization problem; 

 𝑤𝑤𝑖𝑖𝑤𝑤𝑡𝑡ℎ 𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑎𝑎𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑀𝑀 
 ∑ 𝛽𝛽𝑗𝑗 = 1𝑛𝑛

𝑗𝑗=1  

 𝑦𝑦𝑖𝑖  (𝛽𝛽0 + 𝛽𝛽1 + 𝛽𝛽2𝑋𝑋2)  ≥ 𝑀𝑀. 
In most cases, the classes are noisy. Considering a case 

where no matter the line chosen, some points will always 
be on the wrong side of the decision boundary, the 
maximum margin classification would not work (Figure 3). 

 
Figure 3. Diagrammatic representation of data with noisy classes 

In such cases, support vector machine introduces a soft 
margin that allows some points to be on the wrong side. 
By introduction of the error term, some slack is allowed. 
An example of two case maximization yields; 

 𝑦𝑦𝑖𝑖  (𝛽𝛽0 + 𝛽𝛽1 + 𝛽𝛽2𝑋𝑋2)  ≥ 𝑀𝑀 (1- 𝜀𝜀) 

 ∑ 𝜀𝜀𝑖𝑖 ≤ 𝐶𝐶𝑛𝑛
𝑖𝑖=0  

Where 𝐶𝐶 is a tuning parameter that determines the width 
of the margin while 𝜀𝜀′𝑠𝑠 are the slack variables that allow 
observations to fall on the wrong side of the margin 
(Figure 4). 

 
Figure 4. Support vector machine model classification for data with 
noisy classes. 
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If the decision boundary is non-linear, support vector 
machine introduces kernels. 

2.4. XGBoost 
XGBoost is an ensemble learner where the multiple 

machine learning algorithms are used at the same time for 
prediction [6]. An example of an ensemble learner is the 
random forest that uses many decision trees for prediction. 
Ensemble learners are classified into Bagging and 
Boosting. The random forest is a bagging learner where 
decision trees are developed from the subsets of the 
training data set and the final prediction is a weighted sum 
of all the decision tree functions. In boosting learners, 
samples are selected sequentially. For instance, the first 
sample is selected and a decision tree is fitted.  The model 
then picks the examples that were hard to learn and using 
them and a few others selected at random from the 
training data set, a second model is fitted. Prediction is 
then made using the first and the second models. The 
model is then evaluated and hard examples are picked 
together with other randomly selected examples from 
training set and another model is fitted. The process of 
boosting algorithms continues up to a number 𝑛𝑛.  

In gradient boosting, the first model is fitted using the 
original training set. For example, a simple regression model, 
𝑦𝑦 = 𝑓𝑓(𝑥𝑥) +  𝜀𝜀. If the error, say, it is too large, one might 
try to, say, add more features, use another algorithm, tune the 
algorithm, look for more training set etc. However, if the 
error is not white noise and it has a relationship with the output, 
then a second model can be fitted 𝜖𝜖 = 𝑓𝑓(𝑥𝑥) + 𝜀𝜀1 . The 
process continues 𝑛𝑛 – times and the final model will be; 

 𝜖𝜖𝑛𝑛  = 𝑓𝑓𝑛𝑛(𝑥𝑥) + 𝜀𝜀𝑛𝑛−1. 

The final step involves adding these models together 
with some weighting criteria; 

Weights = 𝛼𝛼′𝑠𝑠  which yields the final function that is 
used for prediction.  

2.5. Model Comparison Criterions 
Below is a presentation of the criterions that were used 

for model comparison; 

 .Truepositives TruenegativesAccuracy
N
+

=  

Precision: this is a measure of the proportion of patients 
who were predicted to have a malignant tumor and 
actually had it.  

  .
 

True positivesprecision
Predicted positives

=  

Recall (sensitivity): this is a measure of the proportion of the 
patients that had malignant tumor and were detected by the 
predicting algorithm. This is referred to as the true 
positive rate. 

  .
 

True positivessensitivity
Actual positives

=  

Specificity is the true negative rate. This is the 
proportion the patients who had benign tumors and were 
detected by the predicting algorithm 

  .
 

True negativesSpecificity
Actual negatives

=  

3. Results and Discussion 

3.1. Descriptive Statistics 
The percentage of women with malignant tumors was 

37.26% while the rest 62.74% had benign tumors.  
These percentages presented 212 out of 569 for  
malignant tumors and 357 out of 569 for begnin tumors 
(Figure 5).  

 
Figure 5. Percentages of women with benign and malignant tumors (B – Begnin tumor, M – Malignant tumor) 
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Figure 6. Box plots for variables where there is a significant difference between the tumor types 

Table 1. Extract of a matrix showing correlation between variables 

texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavity_mean concave points_mean symmetry_mean 
Texture_Mean 1.00000 0.329 0.3210857 -0.0233885 0.236702 0.3024 0.293464 
Perimeter_Mean 0.32953 1.000 0.9865068 0.2072782 0.556936 0.7161 0.850977 
Area_mean 0.32108 0.986 1.0000000 0.1770284 0.498501 0.6859 0.823268 
Smoothness_mean -0.02338 0.207 0.1770284 1.0000000 0.659123 0.5219 0.553695 
Compactness_mean 0.23670 0.556 0.4985017 0.6591232 1.000000 0.8831 0.8311350 
Concavity_Mean 0.30241 0.716 0.6859828 0.5219838 0.883120 1.0000 0.921391 
Concave points_mean 0.29346 0.850 0.8232689 0.5536952 0.831135 0.9213 1.000000 
Symmetry_mean 0.07140 0.183 0.1512931 0.5577748 0.602641 0.5006 0.462497 

 
From the boxplots, variables where there is a significant 

difference between the two groups of cancer tumors can 
be identified. When using a boxplot, if two distributions 
do not overlap or more than 75% of two boxplot do not 
overlap then a significant difference in the mean/median 
between the two groups is expected. Some of the variables 
where the distributions of two cancer tumors are 
significantly different are radius mean, texture mean 
among others. The visible differences between malignant 
tumors and benign tumors can be seen in means of all 
cells and worst means where worst means is the average 
of all the worst cells. The distributions of malignant 
tumors have higher scores than the benign tumors in these 
cases (Figure 6). 

Some of the variables were highly correlated. Principal 
component analysis was used for data dimension 
reduction. Since variables were correlated it was evident 
that smaller set of features could be used in building of the 
models. The correlated variables were shown using a 
correlation matrix. An extract of the correlation matrix is 
presented in Table 1. 

Using the elbow rule, the first 15 principle components 
were used. Using 15 principle components, almost  
100% of the variance from the original data set was 
achieved. Since principal component analysis formed new 
characteristics, the variance explained plot was used to 
show the amount of variation of the original features 
captured by each principle component. The new features 
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were simply linear combinations of the old features. This 
plot is referred to as a scree plot. The Scree plot showed 
the variance explained by each principle component which 
reduced as the number of principle components increased 
(Figure 7). 

 
Figure 7. Scree plot for the variance explained by each principal 
component 

The cumulative of variance plot helped to choose the 
number of features based on the amount of variation from 
original data set that the researcher wanted captured. In 
this case, the researcher wanted to use number of principle 
components that would capture almost 100% of the 
variation. After trying with different number of principle 
components, it was found out that the accuracy of the 
models did not increase after the 15th principle 
components (Figure 8). 

 
Figure 8. Cumulative variance explained by the principal components 

Using the first 15 principle components as the new 
predictors, the data was randomly split data into training 
and test set in proportions of 70% and 30% respectively. 
The training data set was used to generate a regularized 
logistic regression model. The optimal values of 𝜆𝜆 were 
chosen using cross validation. The chosen value was the 
one with the highest cross-validation accuracy (Figure 9). 

 
Figure 9. Misclassification errors for the log λ 

The performance of the logistic model fitted was 
summarized using the confusion matrix and the 
classification tables (Table 2 & Table 3). The fitted 
logistic model had a classification accuracy of 96.97%. 
The model had a recall value of 100% implying that all 
the persons who had a malignant tumor were detected  
by the predicting algorithm. The specificity value of the 
algorithm was 96.33% which implied that 96.33% of the 
patients who had a benign tumor were detected by the 
algorithm. The precision of the model was 93.93%. This 
implied that 93.93% of the individuals who were predicted 
to have malignant tumor actually had it. 

Table 2. Confusion matrix for the logistic regression model 

 
Predicted 

Actual 
 Benign Malignant 

Benign 104 0 
Malignant 4 62 

Table 3. Classification table for the logistic regression model 

Term Class estimate conf.low conf.high p.value 

Accuracy NA 0.9766082 0.9411932 0.9935906 0.0000000 

Kappa NA 0.9500876 NA NA 0.1336144 

Sensitivity 1 1.0000000 NA NA NA 

Specificity 1 0.9633028 NA NA NA 

Pos_pred_value 1 0.9393939 NA NA NA 

Neg_pred_value 1 1.0000000 NA NA NA 

Precision 1 0.9393939 NA NA NA 

Recall 1 1.0000000 NA NA NA 

f1 1 0.9687500 NA NA NA 

Prevalence 1 0.3625731 NA NA NA 

Detection_rate 1 0.3625731 NA NA NA 

Detection_prevalence 1 0.3859649 NA NA NA 

Balanced_accuracy 1 0.9816514 NA NA NA 

 
 



202 American Journal of Applied Mathematics and Statistics  

Table 4. Confusion matrix for the Support Vector Machine model 

 
 

Predicted 

Actual 
 Benign Malignant 

Benign 104 1 
Malignant 2 64 

 
Figure 10. Training and test errors for the support vector machine model 

3.2. Support Vector Machine Model 
The performance of the fitted support vector machine 

model was summarized using a confusion matrix (Table 4). 
The fitted model had a classification accuracy of 98.01%. 
The best SVM model was attained after a sample of 400 
data values (Figure 10). The model classified two persons 

having malignant tumors as having benign tumors and one 
person having a begnin tumor as having a malignant 
tumor. 

3.3. Extreme Gradient Boosting Algorithm 
When fitting the XGBoost model, increasing cut of 

increases the precision (Table 5). A greater fraction of 
those who will be predicted that they have cancer will turn 
out that they have, but the algorithm is likely to have 
lower recall. There is therefore need to avoid too many 
cases of people with cancer being predicted that they do 
not have cancer. It will be very bad to tell someone that 
they do not have cancer but they have. Lowering  the 
probability to, say, to 0.3 then this it is make sure that 
even if there is a 30% chance that someone has cancer 
then they should be flagged. 

The performance of the fitted XGBoost model was 
summarized using the confusion matrix and a 
classification table (Table 6 & Table 7). The fitted 
XGBoost model had an overall classification accuracy of 
97.73%. The model had a recall value of 100% implying 
that all the persons who had a malignant tumor were 
detected by the predicting algorithm. The specificity value 
of the algorithm was 97.22% which implied that 97.22% 
of the patients who had a benign tumor were detected by 
the algorithm. The precision of the model was 95.45%. 
This implied that 95.45% of the individuals who were 
predicted to have malignant tumor actually had it. 

Table 5. Precision changes with increasing cut off for the XGBoost Model 

Iteration Train_error_mean Train_error_std Test_error_mean Test_error_std 
1 0.0854217 0.0246005 0.1005200 0.0341107 
2 0.0603117 0.0032692 0.0930573 0.0364313 
3 0.0552993 0.0079092 0.0930573 0.0364313 
4 0.0376987 0.0031983 0.0779060 0.0279312 
5 0.0339107 0.0029770 0.0754183 0.0284401 
6 0.0288883 0.0063645 0.0704053 0.0318404 
7 0.0226133 0.0061394 0.0704053 0.0200412 
8 0.0226133 0.0061394 0.0704053 0.0200412 
9 0.0213317 0.0076876 0.0603800 0.0270910 

10 0.0175727 0.0063618 0.0654303 0.0236148 
11 0.0138037 0.0046634 0.0629053 0.0251602 
12 0.0100443 0.0035311 0.0653930 0.0293481 
13 0.0087910 0.0017587 0.0629053 0.0251602 
14 0.0075377 0.0030697 0.0629053 0.0251602 
15 0.0075377 0.0030697 0.0653930 0.0235629 
16 0.0075377 0.0030697 0.0628677 0.0258586 
17 0.0075377 0.0030697 0.0603423 0.0284188 
18 0.0075377 0.0030697 0.0628677 0.0318281 
19 0.0062750 0.0035377 0.0629053 0.0306453 
20 0.0050220 0.0017657 0.0653930 0.0293481 
21 0.0025157 0.0017789 0.0653930 0.0293481 
22 0.0025157 0.0017789 0.0653930 0.0293481 
23 0.0025157 0.0017789 0.0653930 0.0293481 
24 0.0012627 0.0017857 0.0628677 0.0318281 
25 0.0012627 0.0017857 0.0628677 0.0318281 
26 0.0000000 0.0000000 0.0629053 0.0306453 
27 0.0000000 0.0000000 0.0603800 0.0328373 
28 0.0000000 0.0000000 0.0603800 0.0328373 
29 0.0000000 0.0000000 0.0603800 0.0328373 
30 0.0000000 0.0000000 0.0603800 0.0328373 
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Table 6. Classification table for the XGBoost model 

Term class estimate conf.low conf.high p.value 
Accuracy NA 0.9824561 0.9495877 0.9963673 0.0000000 
Kappa NA 0.9626719 NA NA 0.2482131 
Sensitivity 1 1.0000000 NA NA NA 
Specificity 1 0.9722222 NA NA NA 
pos_pred_value 1 0.9545455 NA NA NA 
neg_pred_value 1 1.0000000 NA NA NA 
Precision 1 0.9545455 NA NA NA 
Recall 1 1.0000000 NA NA NA 
f1 1 0.9767442 NA NA NA 
Prevalence 1 0.3684211 NA NA NA 
detection_rate 1 0.3684211 NA NA NA 
detection_prevalence 1 0.3859649 NA NA NA 
balanced_accuracy 1 0.9861111 NA NA NA 

Table 7. Confusion matrix for the XGBoost model 

 
 

Predicted 

Actual 
 Benign Malignant 

Benign 105 0 
Malignant 3 63 

 
Figure 11. Error analysis for the fitted support vector machine model 

3.4. Analysis of Errors of an Algorithm 
Error analysis involves evaluating the examples that the 

algorithm misclassified to find out if there is a trend. In 
general terms, this is trying to find out the weak points of 
a predicting algorithm and also finding out why the 
algorithm was making those errors. For instance, from  
the boxplots below the malignant tumors that were 
misclassified had lower radius mean compared to 

mislassified benign tumors. This contrary to what we saw 
in the first boxplots graph (Figure 11). 

4. Conclusion 

In conclusion, the support vector machine and extreme 
gradient boosting models perform better in classification 
and prediction of breast cancer tumors as compared to the 
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binary logistic model. However, support vector machine 
shows better prediction power when compared with the 
extreme gradient boosting model. This performance is 
better compared to the performance of the already existing 
models. The precision of extreme gradient boosting model 
also increases with increased cut off point. From this 
study, it can therefore be recommended that support 
vector machine and extreme gradient boosting model can 
be used in predicting the breast cancer tumor types. In 
addition, there should be continued effort of evaluating if 
there are other algorithms that can yield better classification 
accuracy than the ones considered for this study. 
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