

UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELORS OF EDUCATION SCIENCE(MATHEMATICS), BACHELORS OF SCIENCE, BACHELORS OF ARTS(MATHS-ECONS), BACHELORS OF SCIENCE(ECON STATS)

MATH 301: LINEAR ALGEBRA II

STREAMS: AS ABOVE
TIME: 2 HOURS
DAY/DATE: FRIDAY 14/12/2018
8.30 A.M - 10.30 A.M.

INSTRUCTIONS:

- Answer Question ONE and any other TWO Questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE: [30 MARKS]

a) Find the symmetric matrix that correspond to the following quadratic form

$$
q(x, y, z)=2 x^{2}-5 x y+3 y^{2}-16 x z+14 y z-6 z^{2}
$$

b) Prove that similar matrices have the same characteristic polynomial.

$$
A=\left[\begin{array}{cc}
1 & -1 \\
3 & 4
\end{array}\right] \quad f(t)=t^{2}-5 t+7
$$

c) Show that if , then A is a zero of the function

$$
A=\left[\begin{array}{lll}
2 & -3 & 3 \\
3 & -4 & 3 \\
6 & -6 & 5
\end{array}\right]
$$

d) Given that
, find the eigenvalues of

MATH 301

$$
B=\left\{1, x, x^{2}\right\} \quad P_{2}(x)
$$

e) Apply Gram-Schmidtorthogonalization process to the basis in with the

$$
\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x
$$

inner product
to obtain an orthogonal set
[5 Marks]

$$
A=\left[\begin{array}{ccc}
2 & 2 & -5 \\
3 & 7 & -15 \\
1 & 2 & -4
\end{array}\right]
$$

f) Find the minimal polynomial of the matrix
[5 Marks]

$$
B=\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & 3 & 4 \\
7 & -5 & 2
\end{array}\right]
$$

g) Let
i. Show that B is not an orthogonal matrix
ii. Find an orthonormal matrix relative to B

QUESTION TWO: [20 MARKS]

$f \quad R^{2} \quad f\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right]=x_{1} y_{1}-3 x_{1} y_{2}+2 x_{2} y_{2}$
a) Let be a bilinear form on defined by . Find

$$
f \quad\left\{u_{1}=(1,0), u_{2}=(0,1)\right\}
$$

i. The matrix A of in the basis
. $f \quad\left\{v_{1}=(2,1), v_{2}=(1,-1)\right\}$
ii. The matrix B of in the basis

$$
\left\{u_{i}\right\} \ldots\left\{v_{i}\right\}
$$

iii. The change of basis matrix P from the basis to the basis and verify that $B=P^{T} A P$
[12 Marks]

$$
A=\left[\begin{array}{cccc}
1 & 3 & 0 & 1 \\
2 & 5 & -3 & 1 \\
1 & 6 & -2 & 4 \\
0 & 1 & -3 & 7
\end{array}\right]
$$

b) Given that of order 1, 2 and 4.
determine the number and the sum of principal minors
[8 Marks]

QUESTION THREE: [20 MARKS]
a) Let A be the matrix

$$
\left[\begin{array}{ccc}
1 & 2 & -3 \\
2 & 5 & -5 \\
-3 & -5 & 8
\end{array}\right]
$$

$$
D=P^{T} A P
$$

Apply diagonalization algorithm to obtain a matrix P such that

$$
A=\left[\begin{array}{lll}
3 & -1 & 1 \\
7 & -5 & 1 \\
6 & -6 & 2
\end{array}\right]
$$

b) Let
i. Find the characteristic polynomial of A.
ii. Find all the eigenvalues of A and their corresponding eigenvectors.
iii. Is A diagonalizable? Verify
iv. Determine the algebraic and geometric multiplicities of each of the eigenvalues of A

QUESTION FOUR: [20 MARKS]

$$
T: R^{2} \rightarrow R^{2}
$$

a) State Cayley-Hamilton theorem and verify using a linear operator defined by $T(x, y)=,(2 x-3 y, x+5 y)$
b) Find the characteristic polynomial and hence the minimal polynomial of the matrix

$$
\mathrm{A}=\stackrel{\left[\begin{array}{lllll}
4 & 1 & 0 & 0 & 0 \\
0 & 4 & 1 & 0 & 0 \tag{6Marks}\\
0 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 4 & 1 \\
0 & 0 & 0 & 0 & 4
\end{array}\right]}{v_{1}} v_{2}
$$

c) Prove that if and are eigenvectors of a matrix A corresponding to distinct eigenvalues, then $v_{1}{ }^{v_{2}}$ and \quad are linearly independent.
d) Let A be an nxn matrix over a field K . show that the mapping
is a bilinear K^{n}
form on [3 Marks]

QUESTION FIVE: [20 MARKS]

