CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELORS OF EDUCATION SCIENCE(MATHEMATICS), BACHELORS OF SCIENCE, BACHELORS OF ARTS(MATHS-ECONS), BACHELORS OF SCIENCE(ECON STATS)

MATH 301: LINEAR ALGEBRA II

STREAMS: AS ABOVE

TIME: 2 HOURS

8.30 A.M - 10.30 A.M.

DAY/DATE: FRIDAY 14/12/2018

INSTRUCTIONS:

- Answer Question ONE and any other TWO Questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a **closed book exam**, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE: [30 MARKS]

c) Show that

a) Find the symmetric matrix that correspond to the following quadratic form

$$q(x, y, z) = 2x^{2} - 5xy + 3y^{2} - 16xz + 14yz - 6z^{2}$$

[3 Marks]

[3 Marks]

b) Prove that similar matrices have the same characteristic polynomial.

$$A = \begin{bmatrix} 1 & -1 \\ 3 & 4 \end{bmatrix}$$

if $f(t) = t^2 - 5t + 7$
[3 Marks]

$$A = \begin{bmatrix} 2 & -3 & 3 \\ 3 & -4 & 3 \\ 6 & -6 & 5 \end{bmatrix}$$

d) Given that , find the eigenvalues of [5 Marks]

e) Apply Gram-Schmidtorthogonalization process to the basis $B = \{1, x, x^2\}$ $P_2(x)$ with the

$$\langle p,q\rangle = \int_{-1}^{1} p(x)q(x)dx$$

inner product

to obtain an orthogonal set

$$A = \begin{bmatrix} 2 & 2 & -5 \\ 3 & 7 & -15 \\ 1 & 2 & -4 \end{bmatrix}$$

[5 Marks]

[5 Marks]

$$B = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 3 & 4 \\ 7 & -5 & 2 \end{bmatrix}$$

g) Let

- i. Show that B is not an orthogonal matrix [3 Marks]
- ii. Find an orthonormal matrix relative to B [3 Marks]

QUESTION TWO: [20 MARKS]

f f R^2 $f[(x_1, x_2), (y_1, y_2)] = x_1y_1 - 3x_1y_2 + 2x_2y_2$ a) Let be a bilinear form on defined by . Find f $u_1 = (1,0), u_2 = (0,1)$ } i. The matrix A of in the basis f $v_1 = (2,1), v_2 = (1,-1)$ } ii. The matrix B of in the basis $\{u_i\}$ $\{v_i\}$

iii. The change of basis matrix P from the basis to the basis and verify that $B = P^{T}AP$ [12 Marks]

$$A = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 2 & 5 & -3 & 1 \\ 1 & 6 & -2 & 4 \\ 0 & 1 & -3 & 7 \end{bmatrix}$$

that determine the number and the sum of principal minors

b) Given that determine the number and the sum of principal minors [8 Marks]

QUESTION THREE: [20 MARKS]

a) Let A be the matrix

1	2	-3]
2	5	-5
-3	-5	8]

Apply diagonalization algorithm to obtain a matrix P such that $D = P^T A P$ [6 Marks]

$$A = \begin{bmatrix} 3 & -1 & 1 \\ 7 & -5 & 1 \\ 6 & -6 & 2 \end{bmatrix}$$

b) Let

i. Find the characteristic polynomial of A. [4 Marks]
ii. Find all the eigenvalues of A and their corresponding eigenvectors. [5 Marks]
iii. Is A diagonalizable? Verify [2 Marks]
iv. Determine the algebraic and geometric multiplicities of each of the eigenvalues of A

[3 Marks]

QUESTION FOUR: [20 MARKS]

		$T: \mathbb{R}^2 \to \mathbb{R}^2$
a)	State Cayley-Hamilton theorem and verify using a linear operator	defined by
	T(x, y,) = (2x - 3y, x + 5y)	
		[6 Marks]

b) Find the characteristic polynomial and hence the minimal polynomial of the matrix

	4	1	0	0	0]	
	0	4	1	0	0	
	0	0	4	0	0	
	0	0	0	4	1	
	0	0	0	0	0 1 4	
A=	-				_	[6 Marks]
41 4	v	1	v_2			convectors of a matrix A corresponding to distinct airconvalues

c) Prove that if and are eigenvectors of a matrix A corresponding to distinct eigenvalues, $v_1 \quad v_2$ then and are linearly independent. [5 Marks]

d) Let A be an nxn matrix over a field K. show that the mapping $f(X,Y) = X^T A Y$ form on [3 Marks]

QUESTION FIVE: [20 MARKS]

	$f: R^2 \to R$ $f(u, v) = x_1y_1 - x_1y_2 - x_2y_1 + 3x_2y_2$	2
a)	Show that the function defined by	where
	$u = (x_1, x_2)$ $v = (y_1, y_2)$ and defines an inner product in R^2 .	[5 Marks]
b)	$(\frac{1}{3}, \frac{2}{3}, \frac{2}{3})$ Determine an orthogonal matrix P whose first row is ()	[5 Marks]
c)	Evaluate the matrix Q that represent the usual inner product in C^3 relative to the base $\{i, i+1, i-1\}$	asis
	and show that's its hermitian.	[5 Marks]
d)	Prove an orthogonal set of n vectors is linearly independent.	[5 Marks]