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Abstract 

 
In this paper, we investigate some transitivity action properties of the cartesian product of the alternating 

group  𝐴𝑛(𝑛 ≥ 5)  acting on a cartesian product of ordered sets of triples using the Orbit-Stabilizer Theorem 

by showing that the length of the  orbit (𝑝, 𝑠, 𝑣) in  𝐴𝑛 × 𝐴𝑛 × 𝐴𝑛, (𝑛 ≥ 5)  acting on  𝑃[3] × 𝑆[3] × 𝑉[3]  is 

equivalent to the cardinality of  𝑃[3] × 𝑆[3] × 𝑉[3]  to imply transitivity. 

 
 
Keywords: Orbits; stabilizer; transitivity action; ordered sets of triples; cartesian product; fixed point. 

 

1 Preliminaries 

 
1.1 Notation and Terminology 
 
In this paper, we shall represent the following notations as: ∑-  sum over i; 𝐴𝑛 -an alternating group of degree 𝑛  

and order  
𝑛!

2
 ;  |𝐺| – the order of a group  𝐺; |𝐺: 𝐻| -Index of 𝐻 in 𝐺; 𝑃[3] – the set of an ordered triple from set 
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𝑃 = {1,2,3, . . . , n}; 𝑆[3] – the set of an ordered triple from set 𝑆 = {n + 1, n + 2, . . . ,2n}; 𝑉[3] – the set of an 

ordered triple from set 𝑉 = {2𝑛 + 1,2n + 2, . . . ,3𝑛}; [𝑎, 𝑏, 𝑐] -Ordered triple; 𝐴𝑛 × 𝐴𝑛 × 𝐴𝑛 -Cartesian product 

of alternating group 𝐴𝑛;  𝑃[3] × 𝑆[3] × 𝑉[3] -Cartesian product of ordered sets of triples 𝑃[3], 𝑆[3]  and  𝑉[3].  

 
Definition 1.1.1. Group action [1]: Let   𝑃  be a non-empty set. A group   𝐺  is said to act on the left of  𝑃  if 
for each  𝑔 ∈ 𝐺  and each  𝑝 ∈ 𝑃  there corresponds a unique element   𝑔𝑝 ∈ 𝐺  such that: 

 
(i) (𝑔1𝑔2)𝑝 = 𝑔1(𝑔2𝑝), 𝑔1, 𝑔2 ∈ 𝐺  and  𝑝 ∈ 𝑃. 

(ii) For any  𝑝 ∈ 𝑃, 𝑒𝑝 = 𝑝,  where  𝑒  is the identity in 𝐺.   

 
The action of  𝐺  from the right on  𝑃  can be defined in the same manner.  

 
Definition 1.1.2. Orbit [2]:  The action of a group 𝐺  on a set 𝑃 partitions 𝑃 into disjoint equivalence classes 

referred to as orbits or transitivity classes of action. The orbit containing 𝑝 ∈ 𝑃 is denoted by 𝑂𝑟𝑏𝐺(𝑝). 

 
 Definition 1.1.3. Stabilizer of an element [3]: Let  𝐺 act on a set  𝑃  and 𝑝 ∈ 𝑃. The stabilizer of  𝑝  in  𝐺, 

denoted by  𝑆𝑡𝑎𝑏𝐺(𝑝)  is given by  𝑆𝑡𝑎𝑏𝐺(𝑝) = {𝑔 ∈ 𝐺|𝑔𝑝 = 𝑝}. 

 
 Definition 1.1.4. Fixed point [1]: Let  𝐺  act on a set   𝑃. The set of elements of  𝑃   fixed by  𝑔 ∈ 𝐺  is called 

the fixed-point set of  𝐺   and is denoted by  𝐹𝑖𝑥(𝑔). Thus 𝐹𝑖𝑥(𝑔) = {𝑝 ∈ 𝑃|𝑔𝑝 = 𝑝} . 

 
Definition 1.1.5. Transitive group [4]: If the action of a group  𝐺 on set  𝑃  has only one orbit, then we say that  

𝐺 acts transitively on  𝑃. In other words,  𝐺 acts transitively on  𝑃 if for every pair of points 𝑝, 𝑠 ∈  𝑃,  there 

exists 𝑔 ∈ 𝐺  such that  𝑔𝑝 = 𝑠. 

 
Definition 1.1.6. Conjugate group [2]: A group 𝐺  with two subgroups 𝐻 and 𝐾, then they are said to be 

conjugate if 𝐻 = 𝑔𝑘𝑔−1 for some  𝑔 ∈ 𝐺. 

 
Theorem 1.1.7 [5]: Two permutations in 𝐴𝑛 are conjugate if and only if, they have the same cycle type and if 

𝑔 ∈ 𝑆𝑛  has cycle type (α
1
, α

2
, … . , α

n
), then the number of permutations in 𝑆𝑛 conjugate to 𝑔 is,  

𝑛!

∏ 𝛼𝑖!𝑖𝛼𝑖𝑛
𝑖=1

. 

 
Theorem 1.1.8 (Orbit – Stabilizer Theorem, [3, p.72]):  Let 𝐺   act on a set 𝑃 . Then |𝑂𝑟𝑏𝐺  (𝑝)| =
|𝐺: 𝑆𝑡𝑎𝑏𝐺(𝑝)|. 
 
Theorem 1.1.9 [3]: Let 𝐺 be a group acting on a finite set 𝑃. Then the number of 𝐺-orbits in 𝑃 is,  

 

1

|𝐺|
∑ |𝐹𝑖𝑥 (𝑔)|.

𝑔∈𝐺
 

 
Definition 1.1.10 (Direct product action, [4]): Let (𝐺1, 𝑃1)  and (𝐺2, 𝑃2) be permutation groups. The direct 

product  G1 × G2  acts on the disjoint union 𝑃1 ∪ 𝑃2  by the rule 𝑝(𝑔1, 𝑔2) = {
𝑝𝑔1, 𝑖𝑓 𝑝 ∈ 𝑃1,

𝑝𝑔2, 𝑖𝑓 𝑝 ∈ 𝑃2
  and on the 

Cartesian product 𝑃1 × 𝑃2 by the rule  (𝑝1, 𝑝2)(𝑔1, 𝑔2) = (𝑝1𝑔1, 𝑝2𝑔2). 

 
 Theorem 1.1.11 [6]: The 𝐺1 × 𝐺2 × 𝐺3 -orbit containing  (𝑝, 𝑠, 𝑣) ∈ 𝑃 × 𝑆 × 𝑉   is given by  𝑂𝑟𝑏𝐺

1
(𝑝) ×

𝑂𝑟𝑏𝐺
2
(𝑠) × 𝑂𝑟𝑏𝐺

3
(𝑣)  and the stabilizer of  (𝑝, 𝑠, 𝑣)  is given by  𝑆𝑡𝑎𝑏𝐺

1
(𝑝) × 𝑆𝑡𝑎𝑏𝐺

2
(𝑠) × 𝑆𝑡𝑎𝑏𝐺

3
(𝑣). 
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2 Introduction 
 

Higman [7] introduced the rank of a group on finite permutation groups of rank  3. In 1970, Higman proved that 

the rank of the symmetric group  𝑆𝑛  acting on 2-element subsets from the set  𝑃 = {1,2, … , 𝑛} is 3 and the 

subdegrees are: 1 , 2(𝑛 − 1)   and  (
𝑛−2

2
).  Cameron [4] worked on the suborbits of multiply transitive 

permutations and later in 1974 studied the suborbits of primitive groups. 

 

Ndarinyo et al. [8] showed that the alternating group 𝐴𝑛 = 5,6,7 acts transitively on unordered and ordered 

triples from the set  𝑃 = 1,2, … , 𝑛  when 𝑛 ≤ 7  through determination of the number of orbits. Nyaga [9] 

proved that the direct product action of the alternating group on the Cartesian product of three sets is transitive. 

The ranks and subdegrees associated with this action for 𝑛 ≥ 4  is 8 ; and 1, (n − 1), (n − 1)2, (n − 1)3 

respectively. Muriuki et al. [10] showed that for the action of direct product of three symmetric groups on 

Cartesian product of three sets, the action is both transitive and imprimitive for all 𝑛 ≥ 2 and the associated 

rank is 23. Mutua et al. [11] showed that the direct product of 𝑆𝑛 × 𝐴𝑛 on 𝑋 × 𝑌 has its action both transitive 

and imprimitive when  𝑛 ≥ 3. The associated rank for this action is  6 when  𝑛 = 3, but is  4 for all 𝑛 ≥ 3. 

Based on these results we investigate some properties of   𝐴𝑛 × 𝐴𝑛 × 𝐴𝑛 , the cartesian product action of the 

alternating group acting on  𝑃[3] × 𝑆[3] × 𝑉[3], the cartesian product of ordered sets of triples.  

 

The cartesian product of alternating group  𝐴𝑛 × 𝐴𝑛 × 𝐴𝑛, acts on  𝑃[3] × 𝑆[3] × 𝑉[3], by the rule;  

 

𝑔1{([1,2,3], [1,2,4], . . . , [𝑛, 𝑛 − 1, 𝑛 − 3], [𝑛, 𝑛 − 1, 𝑛 − 2])} × 𝑔2{([𝑛 + 1, 𝑛 + 2, 𝑛 + 3], [𝑛 + 1, 𝑛 + 2, 𝑛 +

4], . . . , [2𝑛, 2𝑛 − 1,2𝑛 − 3], [2𝑛, 2𝑛 − 1,2𝑛 − 2])} ×  𝑔3{([2𝑛 + 1,2𝑛 + 2,2𝑛 + 3], [2𝑛 + 1,2𝑛 + 2,2𝑛 +

4], … , [3𝑛, 3𝑛 − 1,3𝑛 − 3], [3𝑛, 3𝑛 − 1,3𝑛 − 3])} = {𝑔1([1,2,3], [1,2,4], . . . , [𝑛, 𝑛 − 1, 𝑛 − 3], [𝑛, 𝑛 − 1, 𝑛 −

2]), 𝑔2([𝑛 + 1, 𝑛 + 2, 𝑛 + 3], [𝑛 + 1, 𝑛 + 2, 𝑛 + 4], . . . , [2𝑛, 2𝑛 − 1,2𝑛 − 3], [2𝑛, 2𝑛 − 1,2𝑛 − 2]), 𝑔3([2𝑛 +

1,2𝑛 + 2,2𝑛 + 3], [2𝑛 + 1,2𝑛 + 2,2𝑛 + 4], … , [3𝑛, 3𝑛 − 1,3𝑛 − 3], [3𝑛, 3𝑛 − 1,3𝑛 − 3])}; 

 

∀ 𝑔1, 𝑔2, 𝑔3 ∈ 𝐴𝑛, {([1,2,3], [1,2,4], . . . , [𝑛, 𝑛 − 1, 𝑛 − 3], [𝑛, 𝑛 − 1, 𝑛 − 2])} ∈

𝑃[3], set of ordered triples from the set  𝑃 = {1,2,3, . . . , 𝑛}; {([𝑛 + 1, 𝑛 + 2, 𝑛 + 3], [𝑛 + 1, 𝑛 + 2, 𝑛 +

4], . . . , [2𝑛, 2𝑛 − 1,2𝑛 − 3], [2𝑛, 2𝑛 − 1,2𝑛 − 2])} ∈ 𝑆[3], set of ordered triples from the set  𝑆 =

{𝑛 + 1, 𝑛 + 2, . . . ,2𝑛};  and {([2𝑛 + 1,2𝑛 + 2,2𝑛 + 3], [2𝑛 + 1,2𝑛 + 2,2𝑛 + 4], … , [3𝑛, 3𝑛 − 1,3𝑛 −

3], [3𝑛, 3𝑛 − 1,3𝑛 − 3])} ∈ 𝑉[3], set of ordered triples from the set  𝑉 = {2𝑛 + 1,2𝑛 + 2, . . . ,3𝑛}. 

 

3 Main Results  

 
Lemma 2.1: The action of  A5 × A5 × A5  on   𝑃[3] × 𝑆[3] × 𝑉[3]   is transitive. 

Proof: Let  𝐺 = 𝐴5 × 𝐴5 × 𝐴5  act on  𝑃[3] × 𝑆[3] × 𝑉[3]   where; gap> Arrangements([1,2,3,4,5],3);   𝑃[3] = {[ 

1, 2, 3 ], [ 1, 2, 4 ], [ 1, 2, 5 ], [ 1, 3, 2 ], [ 1, 3, 4 ], [ 1, 3, 5 ], [ 1, 4, 2 ], [ 1, 4, 3 ], [ 1, 4, 5 ], [ 1, 5, 2 ],  [ 1, 5, 3 

], [ 1, 5, 4 ], [ 2, 1, 3 ], [ 2, 1, 4 ], [ 2, 1, 5 ], [ 2, 3, 1 ], [ 2, 3, 4 ], [ 2, 3, 5 ], [ 2, 4, 1 ], [ 2, 4, 3 ], [ 2, 4, 5 ], [ 2, 5, 

1 ], [ 2, 5, 3 ], [ 2, 5, 4 ],   [ 3, 1, 2 ], [ 3, 1, 4 ], [ 3, 1, 5 ], [ 3, 2, 1 ], [ 3, 2, 4 ], [ 3, 2, 5 ], [ 3, 4, 1 ], [ 3, 4, 2 ], [ 

3, 4, 5 ], [ 3, 5, 1 ],  [ 3, 5, 2 ], [ 3, 5, 4 ], [ 4, 1, 2 ], [ 4, 1, 3 ], [ 4, 1, 5 ], [ 4, 2, 1 ], [ 4, 2, 3 ], [ 4, 2, 5 ], [ 4, 3, 1 

], [ 4, 3, 2 ], [ 4, 3, 5 ], [ 4, 5, 1 ], [ 4, 5, 2 ], [ 4, 5, 3 ],  [ 5, 1, 2 ], [ 5, 1, 3 ], [ 5, 1, 4 ], [ 5, 2, 1 ], [ 5, 2, 3 ], [ 5, 

2, 4 ], [ 5, 3, 1 ], [ 5, 3, 2 ], [ 5, 3, 4 ], [ 5, 4, 1 ], [ 5, 4, 2 ], [ 5, 4, 3 ]} ; 

 

gap> Arrangements([6,7,8,9,10],3); 𝑆[3]   = { [ 6, 7, 8 ], [ 6, 7, 9 ], [ 6, 7, 10 ], [ 6, 8, 7 ], [ 6, 8, 9 ], [ 6, 8, 10 ], [ 

6, 9, 7 ], [ 6, 9, 8 ], [ 6, 9, 10 ], [ 6, 10, 7 ],[ 6, 10, 8 ], [ 6, 10, 9 ], [ 7, 6, 8 ], [ 7, 6, 9 ], [ 7, 6, 10 ], [ 7, 8, 6 ], [ 7, 

8, 9 ], [ 7, 8, 10 ], [ 7, 9, 6 ], [ 7, 9, 8 ], [ 7, 9, 10 ], [ 7, 10, 6 ], [ 7, 10, 8 ],[ 7, 10, 9 ], [ 8, 6, 7 ], [ 8, 6, 9 ], [ 8, 6, 

10 ], [ 8, 7, 6 ], [ 8, 7, 9 ], [ 8, 7, 10 ], [ 8, 9, 6 ], [ 8, 9, 7 ], [ 8, 9, 10 ],[ 8, 10, 6 ], [ 8, 10, 7 ], [ 8, 10, 9 ], [ 9, 6, 7 

], [ 9, 6, 8 ], [ 9, 6, 10 ], [ 9, 7, 6 ], [ 9, 7, 8 ], [ 9, 7, 10 ], [ 9, 8, 6 ], [ 9, 8, 7 ], [ 9, 8, 10 ], [ 9, 10, 6 ],[ 9, 10, 7 ], 
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[ 9, 10, 8 ], [ 10, 6, 7 ], [ 10, 6, 8 ], [ 10, 6, 9 ], [ 10, 7, 6 ], [ 10, 7, 8 ], [ 10, 7, 9 ], [ 10, 8, 6 ], [ 10, 8, 7 ],[ 10, 8, 

9 ], [ 10, 9, 6 ], [ 10, 9, 7 ], [ 10, 9, 8 ]} ;  and 

 

gap> Arrangements([11,12,13,14,15],3); 𝑉[3] = {[ 11, 12, 13 ],[ 11, 12, 14 ],[ 11, 12, 15 ], [ 11, 13, 12 ], [ 11, 

13, 14 ],[11, 13, 15],[ 11, 14, 12 ], [ 11, 14, 13 ], [ 11, 14, 15 ], [ 11, 15, 12 ],[ 11, 15, 13 ], [ 11, 15, 14 ], [ 12, 

11, 13 ], [ 12, 11, 14 ], [ 12, 11, 15 ], [ 12, 13, 11 ], [ 12, 13, 14 ], [ 12, 13, 15 ], [ 12, 14, 11 ], [ 12, 14, 13 ], [ 

12, 14, 15 ],[ 12, 15, 11 ], [ 12, 15, 13 ],[ 12, 15, 14 ], [ 13, 11, 12 ], [ 13, 11, 14 ], [ 13, 11, 15 ], [ 13, 12, 11 ], [ 

13, 12, 14 ], [ 13, 12, 15 ], [ 13, 14, 11 ],[ 13, 14, 12 ], [ 13, 14, 15 ], [ 13, 15, 11 ], [ 13, 15, 12 ], [ 13, 15, 14 ], [ 

14, 11, 12 ], [ 14, 11, 13 ], [ 14, 11, 15 ], [ 14, 12, 11 ], [ 14, 12, 13 ], [ 14, 12, 15 ],[ 14, 13, 11 ], [ 14, 13, 12 ], [ 

14, 13, 15 ],[ 14, 15, 11 ], [ 14, 15, 12 ], [ 14, 15, 13 ], [ 15, 11, 12 ], [ 15, 11, 13 ], [ 15, 11, 14 ], [ 15, 12, 11 ],[ 

15, 12, 13 ], [ 15, 12, 14 ], [ 15, 13, 11 ], [ 15, 13, 12 ], [ 15, 13, 14 ], [ 15, 14, 11 ], [ 15, 14, 12 ], [ 15, 14, 13]} . 

The cartesian product of   𝑃[3] × 𝑆[3] × 𝑉[3]  is generated using the GAP software with,  |𝑃[3] × 𝑆[3] × 𝑉[3]| =

216 000.  G  is generated by  

 

 < {(1 2 3 4 5), (123)}, {(6 7 8 9 10), (678)}, {(11 12 13 14 15), (11 12 13)} >   using the GAP software.   

([1,2,3], [6,7,8], [11,12,13]) is fixed by an element (𝑔𝑝, 𝑔𝑠, 𝑔𝑣) ∈ 𝐺  if and only if  1,2  and  3 comes from a 

single cycle in  𝑔𝑝 ; 6,7  and  8 comes from a single cycle in  𝑔𝑠 and  11,12  and  13 comes from a single cycle 

in  𝑔𝑣 .  

 

Therefore,  𝑆𝑡𝑎𝑏𝐺([1,2,3], [6,7,8], [11,12,13]) = {1,6,11} = {(𝑒𝑝, 𝑒𝑠, 𝑒𝑣)} . 

|𝑆𝑡𝑎𝑏𝐺([1,2,3], [6,7,8], [11,12,13])| = 1 .   

 

By Orbit-Stabilizer Theorem,  

 

|𝑂𝑟𝑏𝐺 ([1,2,3], [6,7,8], [11,12,13])| = |𝐺: 𝑆𝑡𝑎𝑏𝐺([1,2,3], [6,7,8], [11,12,13])| 
 

=
|𝐺|

|𝑆𝑡𝑎𝑏𝐺([1,2,3], [6,7,8], [11,12,13])|
 

 

=
216000

1
= 216000 = |𝑃[3] × 𝑆[3] × 𝑉[3]| 

 

Therefore,  𝐴5 × 𝐴5 × 𝐴5  acts transitively on  𝑃[3] × 𝑆[3] × 𝑉[3] .  

 

Lemma 2.2:  The action of 𝐴6 × 𝐴6 × 𝐴6  on  𝑃[3] × 𝑆[3] × 𝑉[3]  is transitive. 

 

Proof:  Let  𝐺 = 𝐴6 × 𝐴6 × 𝐴6 act on 𝑃[3] × 𝑆[3] × 𝑉[3]   where;   

 

gap> Arrangements([1,2,3,4,5,6],3); 𝑃[3] =[ 1, 2, 3 ], [ 1, 2, 4 ], [ 1, 2, 5 ], [ 1, 2, 6 ], [ 1, 3, 2 ], [ 1, 3, 4 ], [ 1, 3, 

5 ], [ 1, 3, 6 ],  [ 1, 4, 2 ], [ 1, 4, 3 ], [ 1, 4, 5 ], [ 1, 4, 6 ], [ 1, 5, 2 ], [ 1, 5, 3 ], [ 1, 5, 4 ], [ 1, 5, 6 ],  

  [ 1, 6, 2 ], [ 1, 6, 3 ], [ 1, 6, 4 ], [ 1, 6, 5 ], [ 2, 1, 3 ], [ 2, 1, 4 ], [ 2, 1, 5 ], [ 2, 1, 6 ], 

  [ 2, 3, 1 ], [ 2, 3, 4 ], [ 2, 3, 5 ], [ 2, 3, 6 ], [ 2, 4, 1 ], [ 2, 4, 3 ], [ 2, 4, 5 ], [ 2, 4, 6 ], 

  [ 2, 5, 1 ], [ 2, 5, 3 ], [ 2, 5, 4 ], [ 2, 5, 6 ], [ 2, 6, 1 ], [ 2, 6, 3 ], [ 2, 6, 4 ], [ 2, 6, 5 ], 

  [ 3, 1, 2 ], [ 3, 1, 4 ], [ 3, 1, 5 ], [ 3, 1, 6 ], [ 3, 2, 1 ], [ 3, 2, 4 ], [ 3, 2, 5 ], [ 3, 2, 6 ], 

  [ 3, 4, 1 ], [ 3, 4, 2 ], [ 3, 4, 5 ], [ 3, 4, 6 ], [ 3, 5, 1 ], [ 3, 5, 2 ], [ 3, 5, 4 ], [ 3, 5, 6 ], 

  [ 3, 6, 1 ], [ 3, 6, 2 ], [ 3, 6, 4 ], [ 3, 6, 5 ], [ 4, 1, 2 ], [ 4, 1, 3 ], [ 4, 1, 5 ], [ 4, 1, 6 ], 

  [ 4, 2, 1 ], [ 4, 2, 3 ], [ 4, 2, 5 ], [ 4, 2, 6 ], [ 4, 3, 1 ], [ 4, 3, 2 ], [ 4, 3, 5 ], [ 4, 3, 6 ], 

  [ 4, 5, 1 ], [ 4, 5, 2 ], [ 4, 5, 3 ], [ 4, 5, 6 ], [ 4, 6, 1 ], [ 4, 6, 2 ], [ 4, 6, 3 ], [ 4, 6, 5 ], 

  [ 5, 1, 2 ], [ 5, 1, 3 ], [ 5, 1, 4 ], [ 5, 1, 6 ], [ 5, 2, 1 ], [ 5, 2, 3 ], [ 5, 2, 4 ], [ 5, 2, 6 ], 

  [ 5, 3, 1 ], [ 5, 3, 2 ], [ 5, 3, 4 ], [ 5, 3, 6 ], [ 5, 4, 1 ], [ 5, 4, 2 ], [ 5, 4, 3 ], [ 5, 4, 6 ], 

  [ 5, 6, 1 ], [ 5, 6, 2 ], [ 5, 6, 3 ], [ 5, 6, 4 ], [ 6, 1, 2 ], [ 6, 1, 3 ], [ 6, 1, 4 ], [ 6, 1, 5 ], 
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  [ 6, 2, 1 ], [ 6, 2, 3 ], [ 6, 2, 4 ], [ 6, 2, 5 ], [ 6, 3, 1 ], [ 6, 3, 2 ], [ 6, 3, 4 ], [ 6, 3, 5 ], 

  [ 6, 4, 1 ], [ 6, 4, 2 ], [ 6, 4, 3 ], [ 6, 4, 5 ], [ 6, 5, 1 ], [ 6, 5, 2 ], [ 6, 5, 3 ], [ 6, 5, 4 ]}; 

 

gap> Arrangements([7,8,9,10,11,12],3);  𝑆[3] ={[ 7, 8, 9 ], [ 7, 8, 10 ], [ 7, 8, 11 ], [ 7, 8, 12 ], [ 7, 9, 8 ], [ 7, 9, 

10 ], [ 7, 9, 11 ], [ 7, 9, 12 ], [ 7, 10, 8 ], [ 7, 10, 9 ],[ 7, 10, 11 ], [ 7, 10, 12 ], [ 7, 11, 8 ], [ 7, 11, 9 ], [ 7, 11, 10 

], [ 7, 11, 12 ], [ 7, 12, 8 ], [ 7, 12, 9 ], [ 7, 12, 10 ], [ 7, 12, 11 ], [ 8, 7, 9 ], [ 8, 7, 10 ], [ 8, 7, 11 ], [ 8, 7, 12 ], [ 

8, 9, 7 ], [ 8, 9, 10 ], [ 8, 9, 11 ], [ 8, 9, 12 ], [ 8, 10, 7 ], [ 8, 10, 9 ], [ 8, 10, 11 ], [ 8, 10, 12 ], [ 8, 11, 7 ],[ 8, 11, 

9 ], [ 8, 11, 10 ], [ 8, 11, 12 ], [ 8, 12, 7 ], [ 8, 12, 9 ], [ 8, 12, 10 ], [ 8, 12, 11 ], [ 9, 7, 8 ], [ 9, 7, 10 ], [ 9, 7, 11 ], 

[ 9, 7, 12 ], [ 9, 8, 7 ], [ 9, 8, 10 ],[ 9, 8, 11 ], [ 9, 8, 12 ], [ 9, 10, 7 ], [ 9, 10, 8 ], [ 9, 10, 11 ], [ 9, 10, 12 ], [ 9, 

11, 7 ], [ 9, 11, 8 ], [ 9, 11, 10 ], [ 9, 11, 12 ], [ 9, 12, 7 ], [ 9, 12, 8 ], [ 9, 12, 10 ], [ 9, 12, 11 ], [ 10, 7, 8 ], [ 10, 

7, 9 ], [ 10, 7, 11 ], [ 10, 7, 12 ], [ 10, 8, 7 ], [ 10, 8, 9 ], [ 10, 8, 11 ], [ 10, 8, 12 ], [ 10, 9, 7 ], [ 10, 9, 8 ], [ 10, 9, 

11 ], [ 10, 9, 12 ], [ 10, 11, 7 ], [ 10, 11, 8 ], [ 10, 11, 9 ], [ 10, 11, 12 ], [ 10, 12, 7 ], [ 10, 12, 8 ], [ 10, 12, 9 ], [ 

10, 12, 11 ], [ 11, 7, 8 ], [ 11, 7, 9 ], [ 11, 7, 10 ], [ 11, 7, 12 ], [ 11, 8, 7 ], [ 11, 8, 9 ], [ 11, 8, 10 ], [ 11, 8, 12 ], [ 

11, 9, 7 ], [ 11, 9, 8 ], [ 11, 9, 10 ], [ 11, 9, 12 ], [ 11, 10, 7 ], [ 11, 10, 8 ], [ 11, 10, 9 ], [ 11, 10, 12 ], [ 11, 12, 7 

], [ 11, 12, 8 ],[ 11, 12, 9 ], [ 11, 12, 10 ], [ 12, 7, 8 ], [ 12, 7, 9 ], [ 12, 7, 10 ], [ 12, 7, 11 ], [ 12, 8, 7 ], [ 12, 8, 9 

], [ 12, 8, 10 ], [ 12, 8, 11 ], [ 12, 9, 7 ], [ 12, 9, 8 ], [ 12, 9, 10 ], [ 12, 9, 11 ], [ 12, 10, 7 ], [ 12, 10, 8 ], [ 12, 10, 

9 ], [ 12, 10, 11 ], [ 12, 11, 7 ], [ 12, 11, 8 ], [ 12, 11, 9 ], [ 12, 11, 10 ]} 

and;    

 

gap> Arrangements([13,14,15,16,17,18],3);  𝑉[3] ={[ 13, 14, 15 ], [ 13, 14, 16 ], [ 13, 14, 17 ], [ 13, 14, 18 ], [ 

13, 15, 14 ], [ 13, 15, 16 ], [ 13, 15, 17 ], [ 13, 15, 18 ], [ 13, 16, 14 ], [ 13, 16, 15 ],[ 13, 16, 17 ], [ 13, 16, 18 ], [ 

13, 17, 14 ], [ 13, 17, 15 ], [ 13, 17, 16 ], [ 13, 17, 18 ], [ 13, 18, 14 ], [ 13, 18, 15 ], [ 13, 18, 16 ], [ 13, 18, 17 ], 

[ 14, 13, 15 ], [ 14, 13, 16 ], [ 14, 13, 17 ], [ 14, 13, 18 ], [ 14, 15, 13 ], [ 14, 15, 16 ], [ 14, 15, 17 ], [ 14, 15, 18 

], [ 14, 16, 13 ], [ 14, 16, 15 ], [ 14, 16, 17 ], [ 14, 16, 18 ], [ 14, 17, 13 ], [ 14, 17, 15 ], [ 14, 17, 16 ], [ 14, 17, 

18 ], [ 14, 18, 13 ], [ 14, 18, 15 ], [ 14, 18, 16 ], [ 14, 18, 17 ], [ 15, 13, 14 ], [ 15, 13, 16 ], [ 15, 13, 17 ], [ 15, 

13, 18 ], [ 15, 14, 13 ], [ 15, 14, 16 ], [ 15, 14, 17 ], [ 15, 14, 18 ], [ 15, 16, 13 ], [ 15, 16, 14 ], [ 15, 16, 17 ], [ 

15, 16, 18 ], [ 15, 17, 13 ], [ 15, 17, 14 ], [ 15, 17, 16 ], [ 15, 17, 18 ], [ 15, 18, 13 ], [ 15, 18, 14 ], [ 15, 18, 16 ], 

[ 15, 18, 17 ], [ 16, 13, 14 ], [ 16, 13, 15 ], [ 16, 13, 17 ], [ 16, 13, 18 ], [ 16, 14, 13 ], [ 16, 14, 15 ], [ 16, 14, 17 

], [ 16, 14, 18 ], [ 16, 15, 13 ], [ 16, 15, 14 ], [ 16, 15, 17 ], [ 16, 15, 18 ], [ 16, 17, 13 ],  [ 16, 17, 14 ], [ 16, 17, 

15 ], [ 16, 17, 18 ], [ 16, 18, 13 ], [ 16, 18, 14 ], [ 16, 18, 15 ], [ 16, 18, 17 ], [ 17, 13, 14 ], [ 17, 13, 15 ], [ 17, 

13, 16 ], [ 17, 13, 18 ], [ 17, 14, 13 ], [ 17, 14, 15 ], [ 17, 14, 16 ], [ 17, 14, 18 ], [ 17, 15, 13 ], [ 17, 15, 14 ], [ 

17, 15, 16 ], [ 17, 15, 18 ], [ 17, 16, 13 ], [ 17, 16, 14 ],  [ 17, 16, 15 ], [ 17, 16, 18 ], [ 17, 18, 13 ], [ 17, 18, 14 ], 

[ 17, 18, 15 ], [ 17, 18, 16 ], [ 18, 13, 14 ], [ 18, 13, 15 ], [ 18, 13, 16 ], [ 18, 13, 17 ], [ 18, 14, 13 ], [ 18, 14, 15 

], [ 18, 14, 16 ], [ 18, 14, 17 ], [ 18, 15, 13 ], [ 18, 15, 14 ], [ 18, 15, 16 ], [ 18, 15, 17 ], [ 18, 16, 13 ], [ 18, 16, 

14 ], [ 18, 16, 15 ], [ 18, 16, 17 ], [ 18, 17, 13 ], [ 18, 17, 14 ], [ 18, 17, 15 ], [ 18, 17, 16 ]}. 

  

The cartesian product of   𝑃[3] × 𝑆[3] × 𝑉[3]  is generated using the GAP software with    | 𝑃[3] × 𝑆[3] × 𝑉[3]| =

1728000.  G  is generated by   

 < {(123456), (123)}, {(7 8 9 10 11 12), (789)}, {(13 14 15 16 17 18), (13 14 15)} >    using the GAP 

software.   ([1,2,3], [7,8,9], [13,14,15]) is fixed by an element (𝑔𝑝, 𝑔𝑠, 𝑔𝑣) ∈ 𝐺  if and only if  1,2  and  3 

comes from a single cycle in  gp ; 7,8  and  9 comes from a single cycle in  𝑔𝑠 and  13,14  and  15 comes from 

a single cycle of  𝑔𝑣 .  

 

The  |𝑆𝑡𝑎𝑏𝐺([1,2,3], [7,8,9], [13,14,15])| = 27. 

 

By Orbit-Stabilizer Theorem, 

   

|𝑂𝑟𝑏𝐺 ([1,2,3], [7,8,9], [13,14,15])| = |𝐺: 𝑆𝑡𝑎𝑏𝐺([1,2,3], [7,8,9], [13,14,15])| 
 

=
|𝐺|

|𝑆𝑡𝑎𝑏𝐺([1,2,3], [7,8,9], [13,14,15])|
 

 

=
46 656 000

27
= 1728000 = |𝑃[3] × 𝑆[3] × 𝑉[3]| 
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Therefore,  𝐴6 × 𝐴6 × 𝐴6  acts transitively on  𝑃[3] × 𝑆[3] × 𝑉[3].  

 

Lemma 2.3:  The action of 𝐴7 × 𝐴7 × 𝐴7  on  𝑃[3] × 𝑆[3] × 𝑉[3]  is transitive.  

 

Proof:  Let  𝐺 = 𝐴7 × 𝐴7 × 𝐴7 act on  𝑃[3] × 𝑆[3] × 𝑉[3]  where;   

 

gap> Arrangements([1,2,3,4,5,6,7],3);  𝑃[3] = {[ 1, 2, 3 ], [ 1, 2, 4 ], [ 1, 2, 5 ], [ 1, 2, 6 ], [ 1, 2, 7 ], [ 1, 3, 2 ], [ 

1, 3, 4 ], [ 1, 3, 5 ], [ 1, 3, 6 ], [ 1, 3, 7 ], [ 1, 4, 2 ], [ 1, 4, 3 ], [ 1, 4, 5 ], [ 1, 4, 6 ], [ 1, 4, 7 ], [ 1, 5, 2 ], [ 1, 5, 3 ], 

[ 1, 5, 4 ], [ 1, 5, 6 ], [ 1, 5, 7 ], [ 1, 6, 2 ], [ 1, 6, 3 ], [ 1, 6, 4 ], [ 1, 6, 5 ], [ 1, 6, 7 ], [ 1, 7, 2 ], [ 1, 7, 3 ], [ 1, 7, 4 

], [ 1, 7, 5 ], [ 1, 7, 6 ], [ 2, 1, 3 ], [ 2, 1, 4 ], [ 2, 1, 5 ], [ 2, 1, 6 ], [ 2, 1, 7 ], [ 2, 3, 1 ], [ 2, 3, 4 ], [ 2, 3, 5 ], [ 2, 3, 

6 ], [ 2, 3, 7 ], [ 2, 4, 1 ], [ 2, 4, 3 ], [ 2, 4, 5 ], [ 2, 4, 6 ], [ 2, 4, 7 ], [ 2, 5, 1 ], [ 2, 5, 3 ], [ 2, 5, 4 ], [ 2, 5, 6 ], [ 2, 

5, 7 ], [ 2, 6, 1 ], [ 2, 6, 3 ], [ 2, 6, 4 ], [ 2, 6, 5 ], [ 2, 6, 7 ], [ 2, 7, 1 ], [ 2, 7, 3 ], [ 2, 7, 4 ], [ 2, 7, 5 ], [ 2, 7, 6 ], [ 

3, 1, 2 ], [ 3, 1, 4 ], [ 3, 1, 5 ], [ 3, 1, 6 ], [ 3, 1, 7 ], [ 3, 2, 1 ], [ 3, 2, 4 ], [ 3, 2, 5 ], [ 3, 2, 6 ], [ 3, 2, 7 ], [ 3, 4, 1 ], 

[ 3, 4, 2 ], [ 3, 4, 5 ], [ 3, 4, 6 ], [ 3, 4, 7 ], [ 3, 5, 1 ], [ 3, 5, 2 ], [ 3, 5, 4 ], [ 3, 5, 6 ], [ 3, 5, 7 ], [ 3, 6, 1 ], [ 3, 6, 2 

], [ 3, 6, 4 ], [ 3, 6, 5 ], [ 3, 6, 7 ], [ 3, 7, 1 ], [ 3, 7, 2 ], [ 3, 7, 4 ], [ 3, 7, 5 ], [ 3, 7, 6 ], [ 4, 1, 2 ], [ 4, 1, 3 ], [ 4, 1, 

5 ], [ 4, 1, 6 ], [ 4, 1, 7 ], [ 4, 2, 1 ],[ 4, 2, 3 ], [ 4, 2, 5 ], [ 4, 2, 6 ], [ 4, 2, 7 ], [ 4, 3, 1 ], [ 4, 3, 2 ], [ 4, 3, 5 ], [ 4, 

3, 6 ], [ 4, 3, 7 ], [ 4, 5, 1 ], [ 4, 5, 2 ], [ 4, 5, 3 ], [ 4, 5, 6 ], [ 4, 5, 7 ], [ 4, 6, 1 ], [ 4, 6, 2 ], [ 4, 6, 3 ], [ 4, 6, 5 ], [ 

4, 6, 7 ], [ 4, 7, 1 ], [ 4, 7, 2 ], [ 4, 7, 3 ], [ 4, 7, 5 ], [ 4, 7, 6 ], [ 5, 1, 2 ], [ 5, 1, 3 ], [ 5, 1, 4 ], [ 5, 1, 6 ], [ 5, 1, 7 ], 

[ 5, 2, 1 ], [ 5, 2, 3 ], [ 5, 2, 4 ], [ 5, 2, 6 ], [ 5, 2, 7 ],  [ 5, 3, 1 ], [ 5, 3, 2 ], [ 5, 3, 4 ], [ 5, 3, 6 ], [ 5, 3, 7 ], [ 5, 4, 1 

], [ 5, 4, 2 ], [ 5, 4, 3 ], [ 5, 4, 6 ], [ 5, 4, 7 ], [ 5, 6, 1 ], [ 5, 6, 2 ], [ 5, 6, 3 ], [ 5, 6, 4 ], [ 5, 6, 7 ], [ 5, 7, 1 ], [ 5, 7, 

2 ], [ 5, 7, 3 ], [ 5, 7, 4 ], [ 5, 7, 6 ], [ 6, 1, 2 ], [ 6, 1, 3 ], [ 6, 1, 4 ], [ 6, 1, 5 ],  [ 6, 1, 7 ], [ 6, 2, 1 ], [ 6, 2, 3 ], [ 6, 

2, 4 ], [ 6, 2, 5 ], [ 6, 2, 7 ], [ 6, 3, 1 ], [ 6, 3, 2 ], [ 6, 3, 4 ], [ 6, 3, 5 ], [ 6, 3, 7 ], [ 6, 4, 1 ], [ 6, 4, 2 ], [ 6, 4, 3 ],  [ 

6, 4, 5 ], [ 6, 4, 7 ], [ 6, 5, 1 ], [ 6, 5, 2 ], [ 6, 5, 3 ], [ 6, 5, 4 ], [ 6, 5, 7 ], [ 6, 7, 1 ], [ 6, 7, 2 ], [ 6, 7, 3 ],  [ 6, 7, 4 

], [ 6, 7, 5 ], [ 7, 1, 2 ], [ 7, 1, 3 ], [ 7, 1, 4 ], [ 7, 1, 5 ], [ 7, 1, 6 ], [ 7, 2, 1 ], [ 7, 2, 3 ], [ 7, 2, 4 ], [ 7, 2, 5 ], [ 7, 2, 

6 ], [ 7, 3, 1 ], [ 7, 3, 2 ],  [ 7, 3, 4 ], [ 7, 3, 5 ], [ 7, 3, 6 ], [ 7, 4, 1 ], [ 7, 4, 2 ], [ 7, 4, 3 ], [ 7, 4, 5 ], [ 7, 4, 6 ], [ 7, 

5, 1 ], [ 7, 5, 2 ],  [ 7, 5, 3 ], [ 7, 5, 4 ], [ 7, 5, 6 ], [ 7, 6, 1 ], [ 7, 6, 2 ], [ 7, 6, 3 ], [ 7, 6, 4 ], [ 7, 6, 5 ]}; 

 

gap> Arrangements([8,9,10,11,12,13,14],3);  𝑆[3] = {[ 8, 9, 10 ], [ 8, 9, 11 ], [ 8, 9, 12 ], [ 8, 9, 13 ], [ 8, 9, 14 ], 

[ 8, 10, 9 ], [ 8, 10, 11 ], [ 8, 10, 12 ], [ 8, 10, 13 ], [ 8, 10, 14 ], [ 8, 11, 9 ], [ 8, 11, 10 ], [ 8, 11, 12 ], [ 8, 11, 13 

], [ 8, 11, 14 ], [ 8, 12, 9 ], [ 8, 12, 10 ], [ 8, 12, 11 ], [ 8, 12, 13 ], [ 8, 12, 14 ], [ 8, 13, 9 ], [ 8, 13, 10 ], [ 8, 13, 

11 ], [ 8, 13, 12 ], [ 8, 13, 14 ], [ 8, 14, 9 ], [ 8, 14, 10 ], [ 8, 14, 11 ], [ 8, 14, 12 ], [ 8, 14, 13 ], [ 9, 8, 10 ], [ 9, 8, 

11 ], [ 9, 8, 12 ], [ 9, 8, 13 ], [ 9, 8, 14 ], [ 9, 10, 8 ], [ 9, 10, 11 ], [ 9, 10, 12 ], [ 9, 10, 13 ], [ 9, 10, 14 ], [ 9, 11, 8 

], [ 9, 11, 10 ], [ 9, 11, 12 ], [ 9, 11, 13 ], [ 9, 11, 14 ], [ 9, 12, 8 ], [ 9, 12, 10 ], [ 9, 12, 11 ], [ 9, 12, 13 ], [ 9, 12, 

14 ], [ 9, 13, 8 ], [ 9, 13, 10 ], [ 9, 13, 11 ], [ 9, 13, 12 ], [ 9, 13, 14 ], [ 9, 14, 8 ], [ 9, 14, 10 ], [ 9, 14, 11 ], [ 9, 

14, 12 ], [ 9, 14, 13 ], [ 10, 8, 9 ], [ 10, 8, 11 ], [ 10, 8, 12 ], [ 10, 8, 13 ], [ 10, 8, 14 ], [ 10, 9, 8 ],[ 10, 9, 11 ], [ 

10, 9, 12 ], [ 10, 9, 13 ], [ 10, 9, 14 ], [ 10, 11, 8 ], [ 10, 11, 9 ], [ 10, 11, 12 ], [ 10, 11, 13 ], [ 10, 11, 14 ], [ 10, 

12, 8 ], [ 10, 12, 9 ], [ 10, 12, 11 ], [ 10, 12, 13 ], [ 10, 12, 14 ], [ 10, 13, 8 ], [ 10, 13, 9 ], [ 10, 13, 11 ], [ 10, 13, 

12 ], [ 10, 13, 14 ], [ 10, 14, 8 ], [ 10, 14, 9 ], [ 10, 14, 11 ], [ 10, 14, 12 ], [ 10, 14, 13 ], [ 11, 8, 9 ], [ 11, 8, 10 ], 

[ 11, 8, 12 ], [ 11, 8, 13 ], [ 11, 8, 14 ], [ 11, 9, 8 ], [ 11, 9, 10 ], [ 11, 9, 12 ], [ 11, 9, 13 ], [ 11, 9, 14 ], [ 11, 10, 8 

], [ 11, 10, 9 ], [ 11, 10, 12 ], [ 11, 10, 13 ], [ 11, 10, 14 ], [ 11, 12, 8 ], [ 11, 12, 9 ], [ 11, 12, 10 ], [ 11, 12, 13 ], [ 

11, 12, 14 ], [ 11, 13, 8 ], [ 11, 13, 9 ], [ 11, 13, 10 ], [ 11, 13, 12 ], [ 11, 13, 14 ], [ 11, 14, 8 ], [ 11, 14, 9 ], [ 11, 

14, 10 ], [ 11, 14, 12 ], [ 11, 14, 13 ], [ 12, 8, 9 ], [ 12, 8, 10 ], [ 12, 8, 11 ], [ 12, 8, 13 ], [ 12, 8, 14 ], [ 12, 9, 8 ], 

[ 12, 9, 10 ], [ 12, 9, 11 ], [ 12, 9, 13 ], [ 12, 9, 14 ], [ 12, 10, 8 ], [ 12, 10, 9 ],[ 12, 10, 11 ], [ 12, 10, 13 ], [ 12, 

10, 14 ], [ 12, 11, 8 ], [ 12, 11, 9 ], [ 12, 11, 10 ], [ 12, 11, 13 ], [ 12, 11, 14 ], [ 12, 13, 8 ], [ 12, 13, 9 ],  [ 12, 13, 

10 ], [ 12, 13, 11 ], [ 12, 13, 14 ], [ 12, 14, 8 ], [ 12, 14, 9 ], [ 12, 14, 10 ], [ 12, 14, 11 ], [ 12, 14, 13 ], [ 13, 8, 9 

], [ 13, 8, 10 ], [ 13, 8, 11 ], [ 13, 8, 12 ], [ 13, 8, 14 ], [ 13, 9, 8 ], [ 13, 9, 10 ], [ 13, 9, 11 ], [ 13, 9, 12 ], [ 13, 9, 

14 ], [ 13, 10, 8 ], [ 13, 10, 9 ], [ 13, 10, 11 ], [ 13, 10, 12 ],[ 13, 10, 14 ], [ 13, 11, 8 ], [ 13, 11, 9 ], [ 13, 11, 10 ], 

[ 13, 11, 12 ], [ 13, 11, 14 ], [ 13, 12, 8 ], [ 13, 12, 9 ], [ 13, 12, 10 ], [ 13, 12, 11 ], [ 13, 12, 14 ], [ 13, 14, 8 ], [ 

13, 14, 9 ], [ 13, 14, 10 ], [ 13, 14, 11 ], [ 13, 14, 12 ], [ 14, 8, 9 ], [ 14, 8, 10 ], [ 14, 8, 11 ], [ 14, 8, 12 ], [ 14, 8, 

13 ], [ 14, 9, 8 ], [ 14, 9, 10 ], [ 14, 9, 11 ], [ 14, 9, 12 ], [ 14, 9, 13 ], [ 14, 10, 8 ], [ 14, 10, 9 ], [ 14, 10, 11 ], [ 

14, 10, 12 ], [ 14, 10, 13 ], [ 14, 11, 8 ], [ 14, 11, 9 ], [ 14, 11, 10 ], [ 14, 11, 12 ], [ 14, 11, 13 ], [ 14, 12, 8 ], [ 

14, 12, 9 ], [ 14, 12, 10 ], [ 14, 12, 11 ], [ 14, 12, 13 ], [ 14, 13, 8 ], [ 14, 13, 9 ], [ 14, 13, 10 ], [ 14, 13, 11 ], [ 

14, 13, 12 ]}; 
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and 

 

gap> Arrangements([15,16,17,18,19,20,21],3); 𝑉[3] ={[ 15, 16, 17 ], [ 15, 16, 18 ], [ 15, 16, 19 ], [ 15, 16, 20 ], 

[ 15, 16, 21 ], [ 15, 17, 16 ], [ 15, 17, 18 ], [ 15, 17, 19 ], [ 15, 17, 20 ], [ 15, 17, 21 ], [ 15, 18, 16 ], [ 15, 18, 17 

], [ 15, 18, 19 ], [ 15, 18, 20 ], [ 15, 18, 21 ], [ 15, 19, 16 ], [ 15, 19, 17 ], [ 15, 19, 18 ], [ 15, 19, 20 ], [ 15, 19, 

21 ], [ 15, 20, 16 ], [ 15, 20, 17 ], [ 15, 20, 18 ], [ 15, 20, 19 ], [ 15, 20, 21 ], [ 15, 21, 16 ], [ 15, 21, 17 ], [ 15, 

21, 18 ], [ 15, 21, 19 ], [ 15, 21, 20 ], [ 16, 15, 17 ], [ 16, 15, 18 ], [ 16, 15, 19 ], [ 16, 15, 20 ], [ 16, 15, 21 ], [ 

16, 17, 15 ], [ 16, 17, 18 ], [ 16, 17, 19 ], [ 16, 17, 20 ], [ 16, 17, 21 ], [ 16, 18, 15 ], [ 16, 18, 17 ], [ 16, 18, 19 ], 

[ 16, 18, 20 ], [ 16, 18, 21 ], [ 16, 19, 15 ], [ 16, 19, 17 ], [ 16, 19, 18 ], [ 16, 19, 20 ], [ 16, 19, 21 ], [ 16, 20, 15 

], [ 16, 20, 17 ], [ 16, 20, 18 ], [ 16, 20, 19 ], [ 16, 20, 21 ], [ 16, 21, 15 ], [ 16, 21, 17 ], [ 16, 21, 18 ], [ 16, 21, 

19 ], [ 16, 21, 20 ], [ 17, 15, 16 ], [ 17, 15, 18 ], [ 17, 15, 19 ], [ 17, 15, 20 ], [ 17, 15, 21 ], [ 17, 16, 15 ], [ 17, 

16, 18 ], [ 17, 16, 19 ], [ 17, 16, 20 ], [ 17, 16, 21 ], [ 17, 18, 15 ], [ 17, 18, 16 ], [ 17, 18, 19 ], [ 17, 18, 20 ], [ 

17, 18, 21 ], [ 17, 19, 15 ], [ 17, 19, 16 ], [ 17, 19, 18 ], [ 17, 19, 20 ], [ 17, 19, 21 ], [ 17, 20, 15 ], [ 17, 20, 16 ], 

[ 17, 20, 18 ], [ 17, 20, 19 ], [ 17, 20, 21 ], [ 17, 21, 15 ], [ 17, 21, 16 ], [ 17, 21, 18 ], [ 17, 21, 19 ], [ 17, 21, 20 

], [ 18, 15, 16 ], [ 18, 15, 17 ], [ 18, 15, 19 ], [ 18, 15, 20 ], [ 18, 15, 21 ], [ 18, 16, 15 ], [ 18, 16, 17 ], [ 18, 16, 

19 ], [ 18, 16, 20 ], [ 18, 16, 21 ], [ 18, 17, 15 ], [ 18, 17, 16 ], [ 18, 17, 19 ], [ 18, 17, 20 ], [ 18, 17, 21 ], [ 18, 

19, 15 ], [ 18, 19, 16 ], [ 18, 19, 17 ], [ 18, 19, 20 ], [ 18, 19, 21 ], [ 18, 20, 15 ], [ 18, 20, 16 ], [ 18, 20, 17 ], [ 

18, 20, 19 ], [ 18, 20, 21 ], [ 18, 21, 15 ], [ 18, 21, 16 ], [ 18, 21, 17 ], [ 18, 21, 19 ], [ 18, 21, 20 ], [ 19, 15, 16 ], 

[ 19, 15, 17 ], [ 19, 15, 18 ], [ 19, 15, 20 ], [ 19, 15, 21 ], [ 19, 16, 15 ], [ 19, 16, 17 ], [ 19, 16, 18 ], [ 19, 16, 20 

], [ 19, 16, 21 ], [ 19, 17, 15 ], [ 19, 17, 16 ], [ 19, 17, 18 ], [ 19, 17, 20 ], [ 19, 17, 21 ], [ 19, 18, 15 ], [ 19, 18, 

16 ], [ 19, 18, 17 ], [ 19, 18, 20 ], [ 19, 18, 21 ], [ 19, 20, 15 ], [ 19, 20, 16 ], [ 19, 20, 17 ], [ 19, 20, 18 ], [ 19, 

20, 21 ], [ 19, 21, 15 ], [ 19, 21, 16 ], [ 19, 21, 17 ], [ 19, 21, 18 ], [ 19, 21, 20 ], [ 20, 15, 16 ], [ 20, 15, 17 ], [ 

20, 15, 18 ], [ 20, 15, 19 ], [ 20, 15, 21 ], [ 20, 16, 15 ], [ 20, 16, 17 ], [ 20, 16, 18 ], [ 20, 16, 19 ], [ 20, 16, 21 ], 

[ 20, 17, 15 ], [ 20, 17, 16 ], [ 20, 17, 18 ], [ 20, 17, 19 ], [ 20, 17, 21 ], [ 20, 18, 15 ], [ 20, 18, 16 ], [ 20, 18, 17 

],  [ 20, 18, 19 ], [ 20, 18, 21 ], [ 20, 19, 15 ], [ 20, 19, 16 ], [ 20, 19, 17 ], [ 20, 19, 18 ], [ 20, 19, 21 ], [ 20, 21, 

15 ], [ 20, 21, 16 ], [ 20, 21, 17 ], [ 20, 21, 18 ], [ 20, 21, 19 ], [ 21, 15, 16 ], [ 21, 15, 17 ], [ 21, 15, 18 ], [ 21, 

15, 19 ], [ 21, 15, 20 ], [ 21, 16, 15 ], [ 21, 16, 17 ], [ 21, 16, 18 ], [ 21, 16, 19 ], [ 21, 16, 20 ], [ 21, 17, 15 ], [ 

21, 17, 16 ], [ 21, 17, 18 ], [ 21, 17, 19 ], [ 21, 17, 20 ], [ 21, 18, 15 ], [ 21, 18, 16 ], [ 21, 18, 17 ], [ 21, 18, 19 ], 

[ 21, 18, 20 ], [ 21, 19, 15 ], [ 21, 19, 16 ], [ 21, 19, 17 ], [ 21, 19, 18 ], [ 21, 19, 20 ], [ 21, 20, 15 ], [ 21, 20, 16 

], [ 21, 20, 17 ], [ 21, 20, 18 ], [ 21, 20, 19 ]}.  

 

The cartesian product of   𝑃[3] × 𝑆[3] × 𝑉[3]  is generated using the GAP software with,  | 𝑃[3] × 𝑆[3] × 𝑉[3]| =

9 261 000. G  is generated by   

 

 < {(1234567), (123)}, {(8 9 10 11 12 13 14), (8 9 10)}, {(15 16 17 18 19 20 21), (15 16 17)} >    using 

the GAP software.   ([1,2,3], [8,9,10], [15,16,17]) is fixed by an element (𝑔𝑝, 𝑔𝑠, 𝑔𝑣) ∈ 𝐺  if and only if  1,2  

and  3 comes from a single cycle of  𝑔𝑝 ; 8,9  and  10 comes from a single cycle of  𝑔𝑠 and  15,16  and  17 

comes from a single cycle of  𝑔𝑣 .  

 

The  |𝑆𝑡𝑎𝑏𝐺  ([1,2,3], [8,9,10], [15,16,17])| = 1728.    

 

By Orbit-Stabilizer Theorem, 

 

|𝑂𝑟𝑏𝐺  ([1,2,3], [8,9,10], [15,16,17])| = |𝐺: 𝑆𝑡𝑎𝑏𝐺  ([1,2,3], [8,9,10], [15,16,17])| 
 

 

=
|𝐺|

|𝑆𝑡𝑎𝑏𝐺  ([1,2,3], [8,9,10], [15,16,17])|
 

 

 

=
16 003 008 000

1728
= 9261000 = |𝑃[3] × 𝑆[3] × 𝑉[3]| 
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Therefore,  𝐴7 × 𝐴7 × 𝐴7  acts transitively on  𝑃[3] × 𝑆[3] × 𝑉[3] . 

 

Theorem 2.4: The action of 𝐴𝑛 × 𝐴𝑛 × 𝐴𝑛  on  𝑃[3] × 𝑆[3] × 𝑉[3]  is transitive if and only if  𝑛 ≥ 5.   
 

Proof:  Let 𝐺 = 𝐺𝑝 × 𝐺𝑠 × 𝐺𝑣 = 𝐴𝑛 × 𝐴𝑛 × 𝐴𝑛   act on  𝑃[3] × 𝑆[3] × 𝑉[3]. It suffices to verify that  |𝑃[3] ×

𝑆[3] × 𝑉[3]| is equal to |𝑂𝑟𝑏𝐺 ([1,2,3], [𝑛 + 1, 𝑛 + 2, 𝑛 + 3], [2𝑛 + 1,2𝑛 + 2,2𝑛 + 3])| .     

 

 

Let |𝑅| = |𝑆𝑡𝑎𝑏𝐺([1,2,3], [𝑛 + 1, 𝑛 + 2, 𝑛 + 3], [2𝑛 + 1,2𝑛 + 2,2𝑛 + 3])|.     
    

So, (𝑔𝑝, 𝑔𝑠, 𝑔𝑣) ∈ 𝐺 = 𝐴𝑛 × 𝐴𝑛 × 𝐴𝑛  fixes  ([1,2,3], [𝑛 + 1, 𝑛 + 2, 𝑛 + 3], [2𝑛 + 1,2𝑛 + 2,2𝑛 + 3]) ∈ 𝑃[3] ×

𝑆[3] × 𝑉[3]   if and only if   1,2  and  3  comes from 1-cycle of 𝑔𝑝 ; 𝑛 + 1, 𝑛 + 2  and  𝑛 + 3  comes from 1-cycle 

of 𝑔𝑠 and  2𝑛 + 1,2𝑛 + 2   and  2𝑛 + 3comes from 1-cycle of 𝑔𝑣 .  

 

The  𝑆𝑡𝑎𝑏𝐺([1,2,3], [𝑛 + 1, 𝑛 + 2, 𝑛 + 3], [2𝑛 + 1,2𝑛 + 2,2𝑛 + 3])   is isomorphic to:   𝐴𝑛−3 × 𝐴𝑛−3 × 𝐴𝑛−3 .    

 

Therefore,  |𝑅| = |𝑆𝑡𝑎𝑏𝐺([1,2,3], [𝑛 + 1, 𝑛 + 2, 𝑛 + 3], [2𝑛 + 1,2𝑛 + 2,2𝑛 + 3])|  = |𝑆𝑡𝑎𝑏𝐺𝑝
([1,2,3]) ×

𝑆𝑡𝑎𝑏𝐺𝑠
([𝑛 + 1, 𝑛 + 2, 𝑛 + 3]) × 𝑆𝑡𝑎𝑏𝐺𝑣

([2𝑛 + 1,2𝑛 + 2,2𝑛 + 3])|       

 

       

                              |𝑅| =
(𝑛−3)!×(𝑛−3)!×(𝑛−3)!

2×2×2
 = (

(𝑛−3)!

2
)

3

                 

                                                        
 

Applying the Orbit-Stabilizer Theorem we get;  

 

 

|𝑂𝑟𝑏𝐺 ([1,2,3], [𝑛 + 1, 𝑛 + 2, 𝑛 + 3], [2𝑛 + 1,2𝑛 + 2,2𝑛 + 3])| 
 

= |𝐺: 𝑆𝑡𝑎𝑏𝐺([1,2,3], [𝑛 + 1, 𝑛 + 2, 𝑛 + 3], [2𝑛 + 1,2𝑛 + 2,2𝑛 + 3])|      
                                                                                               

     |𝐺| =
𝑛!×𝑛!×𝑛!

2×2×2
= (

𝑛!

2
)

3

       

                                                                     

      
|𝐺|

|𝑅|
=

(
𝑛!

2
)

3

(
(𝑛−3)!

2
)

3
= (

𝑛!

(𝑛−3)!
)

3

 . 

 

Therefore;  

 

  
|𝐺|

|𝑅|
= (

𝑛!

(𝑛−3)!
)

3

= |𝑃[3] × 𝑆[3] × 𝑉[3]|                             

 

Hence,  𝐴𝑛 × 𝐴𝑛 × 𝐴𝑛  acts transitively on 𝑃[3] × 𝑆[3] × 𝑉[3]  if  𝑛 ≥ 5.      

 

 

 

Corollary 2.5: For   𝑛 < 5, the 

 

 |𝑆𝑡𝑎𝑏𝐺([1,2,3], [𝑛 + 1, 𝑛 + 2, 𝑛 + 3], [2𝑛 + 1,2𝑛 + 2,2𝑛 + 3])|=|𝐴𝑛−3 × 𝐴𝑛−3 × 𝐴𝑛−3| < 1. 
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4. Conclusion 

 
The cartesian product of the alternating group  𝐴_𝑛(𝑛 ≥ 5)  acting on a cartesian product of ordered sets of 

triples has been determined to be transitive using the Orbit-Stabilizer Theorem by showing that the length of the  

orbit (𝑝, 𝑠, 𝑣) in  𝐴𝑛 × 𝐴𝑛 × 𝐴𝑛, (𝑛 ≥ 5)  acting on  𝑃[3] × 𝑆[3] × 𝑉[3]  is equivalent to the cardinality of  𝑃[3] ×

𝑆[3] × 𝑉[3]  to imply transitivity. 
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