Transitivity Action of the Cartesian Product of the Alternating Group Acting on a Cartesian Product of Ordered Sets of Triples

Maraka K. Moses ${ }^{a^{*}}$, Musundi W. Sammy ${ }^{\text {a }}$ and Lewis N. Nyaga ${ }^{\text {b }}$
${ }^{a}$ Department of Physical Sciences, Chuka University; P.O.Box 109-60400 Chuka, Kenya.
${ }^{b}$ Department of Pure and Applied Mathematics, Jomo Kenyatta University of Agriculture and Technology, P.O.Box 62000-00200 Nairobi, Kenya.

Authors' contributions
This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information
DOI: 10.9734/ARJOM/2021/v17i1230348
Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here:
https://www.sdiarticle5.com/review-history/79636

Received 21 October 2021
Original Research Article
Accepted 23 December 2021
Published 24 December 2021

Abstract

In this paper, we investigate some transitivity action properties of the cartesian product of the alternating group $A_{n}(n \geq 5)$ acting on a cartesian product of ordered sets of triples using the Orbit-Stabilizer Theorem by showing that the length of the orbit (p, s, v) in $A_{n} \times A_{n} \times A_{n},(n \geq 5)$ acting on $P^{[3]} \times S^{[3]} \times V^{[3]}$ is equivalent to the cardinality of $P^{[3]} \times S^{[3]} \times V^{[3]}$ to imply transitivity.

Keywords: Orbits; stabilizer; transitivity action; ordered sets of triples; cartesian product; fixed point.

1 Preliminaries

1.1 Notation and Terminology

In this paper, we shall represent the following notations as: \sum - sum over i ; A_{n}-an alternating group of degree n and order $\frac{n!}{2} ;|G|-$ the order of a group $G ;|G: H|$-Index of H in $G ; P^{[3]}-$ the set of an ordered triple from set

[^0]$P=\{1,2,3, \ldots, \mathrm{n}\} ; S^{[3]}$ - the set of an ordered triple from set $S=\{\mathrm{n}+1, \mathrm{n}+2, \ldots, 2 \mathrm{n}\} ; V^{[3]}-$ the set of an ordered triple from set $V=\{2 n+1,2 n+2, \ldots, 3 n\} ;[a, b, c]$-Ordered triple; $A_{n} \times A_{n} \times A_{n}$-Cartesian product of alternating group $A_{n} ; P^{[3]} \times S^{[3]} \times V^{[3]}$-Cartesian product of ordered sets of triples $P^{[3]}, S^{[3]}$ and $V^{[3]}$.

Definition 1.1.1. Group action [1]: Let P be a non-empty set. A group G is said to act on the left of P if for each $g \in G$ and each $p \in P$ there corresponds a unique element $g p \in G$ such that:
(i) $\left(g_{1} g_{2}\right) p=g_{1}\left(g_{2} p\right), g_{1}, g_{2} \in G$ and $p \in P$.
(ii) For any $p \in P, e p=p$, where e is the identity in G.

The action of G from the right on P can be defined in the same manner.
Definition 1.1.2. Orbit [2]: The action of a group G on a set P partitions P into disjoint equivalence classes referred to as orbits or transitivity classes of action. The orbit containing $p \in P$ is denoted by $\operatorname{Orb}_{G}(p)$.

Definition 1.1.3. Stabilizer of an element [3]: Let G act on a set P and $p \in P$. The stabilizer of p in G, denoted by $\operatorname{Stab}_{G}(p)$ is given by $\operatorname{Stab}_{G}(p)=\{g \in G \mid g p=p\}$.

Definition 1.1.4. Fixed point [1]: Let G act on a set P. The set of elements of P fixed by $g \in G$ is called the fixed-point set of G and is denoted by Fix (g). Thus Fix $(g)=\{p \in P \mid g p=p\}$.

Definition 1.1.5. Transitive group [4]: If the action of a group G on set P has only one orbit, then we say that G acts transitively on P. In other words, G acts transitively on P if for every pair of points $p, s \in P$, there exists $g \in G$ such that $g p=s$.

Definition 1.1.6. Conjugate group [2]: A group G with two subgroups H and K, then they are said to be conjugate if $H=g k g^{-1}$ for some $g \in G$.

Theorem 1.1.7 [5]: Two permutations in A_{n} are conjugate if and only if, they have the same cycle type and if $g \in S_{n}$ has cycle type $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\mathrm{n}}\right)$, then the number of permutations in S_{n} conjugate to g is, $\frac{n!}{\prod_{i=1}^{n} \alpha_{i}!i^{\alpha i}}$.

Theorem 1.1.8 (Orbit - Stabilizer Theorem, [3, p.72]): Let G act on a set P. Then $\left|\operatorname{Orb}_{G}(p)\right|=$ $\left|G: \operatorname{Stab}_{G}(p)\right|$.

Theorem 1.1.9 [3]: Let G be a group acting on a finite set P. Then the number of G-orbits in P is,

$$
\frac{1}{|G|} \sum_{g \in G}|F i x(g)|
$$

Definition 1.1.10 (Direct product action, [4]): Let $\left(G_{1}, P_{1}\right)$ and $\left(G_{2}, P_{2}\right)$ be permutation groups. The direct product $\mathrm{G}_{1} \times \mathrm{G}_{2}$ acts on the disjoint union $P_{1} \cup P_{2}$ by the rule $p\left(g_{1}, g_{2}\right)=\left\{\begin{array}{l}p g_{1}, \text { if } p \in P_{1}, \\ p g_{2}, \text { if } p \in P_{2}\end{array}\right.$ and on the Cartesian product $P_{1} \times P_{2}$ by the rule $\left(p_{1}, p_{2}\right)\left(g_{1}, g_{2}\right)=\left(p_{1} g_{1}, p_{2} g_{2}\right)$.

Theorem 1.1.11 [6]: The $G_{1} \times G_{2} \times G_{3}$-orbit containing $(p, s, v) \in P \times S \times V$ is given by $\operatorname{Orb}_{G_{1}}(p) \times$ $\operatorname{Orb}_{G_{2}}(s) \times \operatorname{Orb}_{G_{3}}(v)$ and the stabilizer of (p, s, v) is given by $\operatorname{Stab}_{G_{1}}(p) \times \operatorname{Stab}_{G_{2}}(s) \times \operatorname{Stab}_{G_{3}}(v)$.

2 Introduction

Higman [7] introduced the rank of a group on finite permutation groups of rank 3. In 1970, Higman proved that the rank of the symmetric group S_{n} acting on 2-element subsets from the set $P=\{1,2, \ldots, n\}$ is 3 and the subdegrees are: $1,2(n-1)$ and $\binom{n-2}{2}$. Cameron [4] worked on the suborbits of multiply transitive permutations and later in 1974 studied the suborbits of primitive groups.

Ndarinyo et al. [8] showed that the alternating group $A_{n}=5,6,7$ acts transitively on unordered and ordered triples from the set $P=1,2, \ldots, n$ when $n \leq 7$ through determination of the number of orbits. Nyaga [9] proved that the direct product action of the alternating group on the Cartesian product of three sets is transitive. The ranks and subdegrees associated with this action for $n \geq 4$ is 8 ; and $1,(n-1),(n-1)^{2},(n-1)^{3}$ respectively. Muriuki et al. [10] showed that for the action of direct product of three symmetric groups on Cartesian product of three sets, the action is both transitive and imprimitive for all $n \geq 2$ and the associated rank is 2^{3}. Mutua et al. [11] showed that the direct product of $S_{n} \times A_{n}$ on $X \times Y$ has its action both transitive and imprimitive when $n \geq 3$. The associated rank for this action is 6 when $n=3$, but is 4 for all $n \geq 3$. Based on these results we investigate some properties of $A_{n} \times A_{n} \times A_{n}$, the cartesian product action of the alternating group acting on $P^{[3]} \times S^{[3]} \times V^{[3]}$, the cartesian product of ordered sets of triples.

The cartesian product of alternating group $A_{n} \times A_{n} \times A_{n}$, acts on $P^{[3]} \times S^{[3]} \times V^{[3]}$, by the rule;
$g_{1}\{([1,2,3],[1,2,4], \ldots,[n, n-1, n-3],[n, n-1, n-2])\} \times g_{2}\{([n+1, n+2, n+3],[n+1, n+2, n+$ $4], \ldots,[2 n, 2 n-1,2 n-3],[2 n, 2 n-1,2 n-2])\} \times g_{3}\{([2 n+1,2 n+2,2 n+3],[2 n+1,2 n+2,2 n+$ $4], \ldots,[3 n, 3 n-1,3 n-3],[3 n, 3 n-1,3 n-3])\}=\left\{g_{1}([1,2,3],[1,2,4], \ldots,[n, n-1, n-3],[n, n-1, n-\right.$ 2]), $g_{2}([n+1, n+2, n+3],[n+1, n+2, n+4], \ldots,[2 n, 2 n-1,2 n-3],[2 n, 2 n-1,2 n-2]), g_{3}([2 n+$ $1,2 n+2,2 n+3],[2 n+1,2 n+2,2 n+4], \ldots,[3 n, 3 n-1,3 n-3],[3 n, 3 n-1,3 n-3])\}$;
$\forall g_{1}, g_{2}, g_{3} \in A_{n},\{([1,2,3],[1,2,4], \ldots,[n, n-1, n-3],[n, n-1, n-2])\} \in$ $P^{[3]}$, set of ordered triples from the set $P=\{1,2,3, \ldots, n\}$; $\{([n+1, n+2, n+3],[n+1, n+2, n+$ $4], \ldots,[2 n, 2 n-1,2 n-3],[2 n, 2 n-1,2 n-2])\} \in S^{[3]}$, set of ordered triples from the set $S=$ $\{n+1, n+2, \ldots, 2 n\} ; \quad$ and $\quad\{([2 n+1,2 n+2,2 n+3],[2 n+1,2 n+2,2 n+4], \ldots,[3 n, 3 n-1,3 n-$ 3], $[3 n, 3 n-1,3 n-3])\} \in V^{[3]}$, set of ordered triples from the set $V=\{2 n+1,2 n+2, \ldots, 3 n\}$.

3 Main Results

Lemma 2.1: The action of $\mathrm{A}_{5} \times \mathrm{A}_{5} \times \mathrm{A}_{5}$ on $P^{[3]} \times S^{[3]} \times V^{[3]}$ is transitive.
Proof: Let $G=A_{5} \times A_{5} \times A_{5}$ act on $P^{[3]} \times S^{[3]} \times V^{[3]} \quad$ where; gap> Arrangements([1,2,3,4,5],3); $P^{[3]}=\{[$ $1,2,3],[1,2,4],[1,2,5],[1,3,2],[1,3,4],[1,3,5],[1,4,2],[1,4,3],[1,4,5],[1,5,2],[1,5,3$], [1,5,4], [2, 1, 3], [2, 1, 4], [2, 1, 5], [2, 3, 1], [2, 3, 4], [2, 3, 5], [2, 4, 1], [2, 4, 3], [2, 4, 5], [2, 5, $1],[2,5,3],[2,5,4],[3,1,2],[3,1,4],[3,1,5],[3,2,1],[3,2,4],[3,2,5],[3,4,1],[3,4,2],[$ $3,4,5],[3,5,1],[3,5,2],[3,5,4],[4,1,2],[4,1,3],[4,1,5],[4,2,1],[4,2,3],[4,2,5],[4,3,1$], $[4,3,2],[4,3,5],[4,5,1],[4,5,2],[4,5,3],[5,1,2],[5,1,3],[5,1,4],[5,2,1],[5,2,3],[5$, $2,4],[5,3,1],[5,3,2],[5,3,4],[5,4,1],[5,4,2],[5,4,3]\} ;$
gap> Arrangements([6,7,8,9,10],3); $S^{[3]}=\{[6,7,8],[6,7,9],[6,7,10],[6,8,7],[6,8,9],[6,8,10],[$ $6,9,7],[6,9,8],[6,9,10],[6,10,7],[6,10,8],[6,10,9],[7,6,8],[7,6,9],[7,6,10],[7,8,6],[7$, $8,9],[7,8,10],[7,9,6],[7,9,8],[7,9,10],[7,10,6],[7,10,8],[7,10,9],[8,6,7],[8,6,9],[8,6$, $10],[8,7,6],[8,7,9],[8,7,10],[8,9,6],[8,9,7],[8,9,10],[8,10,6],[8,10,7],[8,10,9],[9,6,7$], [9,6, 8$],[9,6,10],[9,7,6],[9,7,8],[9,7,10],[9,8,6],[9,8,7],[9,8,10],[9,10,6],[9,10,7]$,
$[9,10,8],[10,6,7],[10,6,8],[10,6,9],[10,7,6],[10,7,8],[10,7,9],[10,8,6],[10,8,7],[10,8$, 9], [10, 9, 6], [10, 9, 7], [10, 9, 8]\}; and
gap> Arrangements $([11,12,13,14,15], 3) ; V^{[3]}=\{[11,12,13],[11,12,14],[11,12,15],[11,13,12],[11$, $13,14],[11,13,15],[11,14,12],[11,14,13],[11,14,15],[11,15,12],[11,15,13],[11,15,14],[12$, 11,13], [12, 11, 14], [12, 11, 15], [12, 13, 11], [12, 13, 14], [12, 13, 15], [12, 14, 11], [12, 14, 13], [$12,14,15],[12,15,11],[12,15,13],[12,15,14],[13,11,12],[13,11,14],[13,11,15],[13,12,11],[$ $13,12,14],[13,12,15],[13,14,11],[13,14,12],[13,14,15],[13,15,11],[13,15,12],[13,15,14],[$ $14,11,12],[14,11,13],[14,11,15],[14,12,11],[14,12,13],[14,12,15],[14,13,11],[14,13,12],[$ $14,13,15],[14,15,11],[14,15,12],[14,15,13],[15,11,12],[15,11,13],[15,11,14],[15,12,11],[$ $15,12,13],[15,12,14],[15,13,11],[15,13,12],[15,13,14],[15,14,11],[15,14,12],[15,14,13]\}$. The cartesian product of $P^{[3]} \times S^{[3]} \times V^{[3]}$ is generated using the GAP software with, $\left|P^{[3]} \times S^{[3]} \times V^{[3]}\right|=$ 216000. G is generated by
$<\{(12345),(123)\},\{(678910),(678)\},\{(1112131415),(111213)\}>\quad$ using the GAP software. $([1,2,3],[6,7,8],[11,12,13])$ is fixed by an element $\left(g_{p}, g_{s}, g_{v}\right) \in G$ if and only if 1,2 and 3 comes from a single cycle in $g_{p} ; 6,7$ and 8 comes from a single cycle in g_{s} and 11,12 and 13 comes from a single cycle in g_{v}.

Therefore,

$$
\operatorname{Stab}_{G}([1,2,3],[6,7,8],[11,12,13])=\{1,6,11\}=\left\{\left(e_{p}, e_{s}, e_{v}\right)\right\}
$$

$\left|\operatorname{Stab}_{G}([1,2,3],[6,7,8],[11,12,13])\right|=1$.
By Orbit-Stabilizer Theorem,

$$
\begin{aligned}
& \left|\operatorname{Orb}_{G}([1,2,3],[6,7,8],[11,12,13])\right|=\left|G: \operatorname{Stab}_{G}([1,2,3],[6,7,8],[11,12,13])\right| \\
& =\frac{|G|}{\left|\operatorname{Stab}_{G}([1,2,3],[6,7,8],[11,12,13])\right|} \\
& =\frac{216000}{1}=216000=\left|P^{[3]} \times S^{[3]} \times V^{[3]}\right|
\end{aligned}
$$

Therefore, $A_{5} \times A_{5} \times A_{5}$ acts transitively on $P^{[3]} \times S^{[3]} \times V^{[3]}$.
Lemma 2.2: The action of $A_{6} \times A_{6} \times A_{6}$ on $P^{[3]} \times S^{[3]} \times V^{[3]}$ is transitive.
Proof: Let $G=A_{6} \times A_{6} \times A_{6}$ act on $P^{[3]} \times S^{[3]} \times V^{[3]}$ where;
gap> Arrangements([1,2,3,4,5,6],3); $P^{[3]}=[1,2,3],[1,2,4],[1,2,5],[1,2,6],[1,3,2],[1,3,4],[1,3$, $5],[1,3,6],[1,4,2],[1,4,3],[1,4,5],[1,4,6],[1,5,2],[1,5,3],[1,5,4],[1,5,6]$,
$[1,6,2],[1,6,3],[1,6,4],[1,6,5],[2,1,3],[2,1,4],[2,1,5],[2,1,6]$,
$[2,3,1],[2,3,4],[2,3,5],[2,3,6],[2,4,1],[2,4,3],[2,4,5],[2,4,6]$,
$[2,5,1],[2,5,3],[2,5,4],[2,5,6],[2,6,1],[2,6,3],[2,6,4],[2,6,5]$,
$[3,1,2],[3,1,4],[3,1,5],[3,1,6],[3,2,1],[3,2,4],[3,2,5],[3,2,6]$,
$[3,4,1],[3,4,2],[3,4,5],[3,4,6],[3,5,1],[3,5,2],[3,5,4],[3,5,6]$,
$[3,6,1],[3,6,2],[3,6,4],[3,6,5],[4,1,2],[4,1,3],[4,1,5],[4,1,6]$,
$[4,2,1],[4,2,3],[4,2,5],[4,2,6],[4,3,1],[4,3,2],[4,3,5],[4,3,6]$,
$[4,5,1],[4,5,2],[4,5,3],[4,5,6],[4,6,1],[4,6,2],[4,6,3],[4,6,5]$,
$[5,1,2],[5,1,3],[5,1,4],[5,1,6],[5,2,1],[5,2,3],[5,2,4],[5,2,6]$,
$[5,3,1],[5,3,2],[5,3,4],[5,3,6],[5,4,1],[5,4,2],[5,4,3],[5,4,6]$,
$[5,6,1],[5,6,2],[5,6,3],[5,6,4],[6,1,2],[6,1,3],[6,1,4],[6,1,5]$,

```
[6,2,1],[6,2,3],[6,2,4],[6,2,5],[6,3,1],[6,3,2],[6,3,4],[6,3,5],
[6,4,1],[6,4,2],[6,4,3],[6,4,5],[6,5,1],[6,5,2],[6, 5, 3],[6, 5, 4]};
```

gap> Arrangements([7,8,9,10,11,12],3); $S^{[3]}=\{[7,8,9],[7,8,10],[7,8,11],[7,8,12],[7,9,8],[7,9$, $10],[7,9,11],[7,9,12],[7,10,8],[7,10,9],[7,10,11],[7,10,12],[7,11,8],[7,11,9],[7,11,10$], [7,11, 12], [7, 12, 8], [7, 12, 9], [7, 12, 10], [7, 12, 11], [8, 7, 9], [8, 7, 10], [8, 7, 11], [8, 7, 12], [$8,9,7],[8,9,10],[8,9,11],[8,9,12],[8,10,7],[8,10,9],[8,10,11],[8,10,12],[8,11,7],[8,11$, $9],[8,11,10],[8,11,12],[8,12,7],[8,12,9],[8,12,10],[8,12,11],[9,7,8],[9,7,10],[9,7,11]$, $[9,7,12],[9,8,7],[9,8,10],[9,8,11],[9,8,12],[9,10,7],[9,10,8],[9,10,11],[9,10,12],[9$, $11,7],[9,11,8],[9,11,10],[9,11,12],[9,12,7],[9,12,8],[9,12,10],[9,12,11],[10,7,8],[10$, $7,9],[10,7,11],[10,7,12],[10,8,7],[10,8,9],[10,8,11],[10,8,12],[10,9,7],[10,9,8],[10,9$, 11], [10, 9, 12], [10, 11, 7], [10, 11, 8], [10, 11, 9], [10, 11, 12], [10, 12, 7], [10, 12, 8], [10, 12, 9], [$10,12,11],[11,7,8],[11,7,9],[11,7,10],[11,7,12],[11,8,7],[11,8,9],[11,8,10],[11,8,12],[$ $11,9,7],[11,9,8],[11,9,10],[11,9,12],[11,10,7],[11,10,8],[11,10,9],[11,10,12],[11,12,7$], [11, 12, 8], [11, 12, 9], [11, 12, 10], [12, 7, 8], [12, 7, 9], [12, 7, 10], [12, 7, 11], [12, 8, 7], [12, 8, 9], [12, 8, 10], [$12,8,11],[12,9,7],[12,9,8],[12,9,10],[12,9,11],[12,10,7],[12,10,8],[12,10$, $9],[12,10,11],[12,11,7],[12,11,8],[12,11,9],[12,11,10]\}$
and;
gap> Arrangements $([13,14,15,16,17,18], 3) ; V^{[3]}=\{[13,14,15],[13,14,16],[13,14,17],[13,14,18]$ [$13,15,14$], [$13,15,16$], [13, 15, 17], [13, 15, 18], [13, 16, 14], [13, 16, 15],[$13,16,17$], [13, 16, 18], [$13,17,14],[13,17,15],[13,17,16],[13,17,18],[13,18,14],[13,18,15],[13,18,16],[13,18,17]$, [$14,13,15$], [14, 13, 16], [14, 13, 17], [14, 13, 18], [14, 15, 13], [14, 15, 16], [14, 15, 17], [14, 15,18], [14, 16, 13], [14, 16, 15], [14, 16, 17], [14, 16, 18], [14, 17, 13], [14, 17, 15], [14, 17, 16], [14, 17, 18], [14, 18, 13], [14, 18, 15], [14, 18, 16], [14, 18, 17], [15, 13, 14], [15, 13, 16], [15, 13, 17], [15, 13,18], [15, 14, 13], [15, 14, 16], [15, 14, 17], [15, 14, 18], [15, 16, 13], [15, 16, 14], [15, 16, 17], [15, 16, 18], [15, 17, 13], [15, 17, 14], [15, 17, 16], [15, 17, 18], [15, 18, 13], [15, 18, 14], [15, 18, 16], $[15,18,17],[16,13,14],[16,13,15],[16,13,17],[16,13,18],[16,14,13],[16,14,15],[16,14,17$], [16, 14, 18], [16, 15, 13], [16, 15, 14], [16, 15, 17], [16, 15, 18], [16, 17, 13], [16, 17, 14], [16, 17, 15], [16, 17, 18], [16, 18, 13], [16, 18, 14], [16, 18, 15], [16, 18, 17], [17, 13, 14], [17, 13, 15], [17, 13,16], [17, 13, 18], [17, 14, 13], [17, 14, 15], [17, 14, 16], [17, 14, 18], [17, 15, 13], [17, 15, 14], [$17,15,16],[17,15,18],[17,16,13],[17,16,14],[17,16,15],[17,16,18],[17,18,13],[17,18,14]$, [17, 18, 15], [17, 18, 16], [18, 13, 14], [18, 13, 15], [18, 13, 16], [18, 13, 17], [18, 14, 13], [18, 14, 15], [18, 14, 16], [18, 14, 17], [18, 15, 13], [18, 15, 14], [18, 15, 16], [18, 15, 17], [18, 16, 13], [18, 16, 14], [18, 16, 15], [18, 16, 17], [18, 17, 13], [18, 17, 14], [18, 17, 15], [18, 17, 16]\}.

The cartesian product of $P^{[3]} \times S^{[3]} \times V^{[3]}$ is generated using the GAP software with $\left|P^{[3]} \times S^{[3]} \times V^{[3]}\right|=$ 1728000. G is generated by
$<\{(123456),(123)\},\{(789101112),(789)\},\{(131415161718),(131415)\}>\quad$ using the GAP software. $\quad([1,2,3],[7,8,9],[13,14,15])$ is fixed by an element $\left(g_{p}, g_{s}, g_{v}\right) \in G$ if and only if 1,2 and 3 comes from a single cycle in $\mathrm{g}_{\mathrm{p}} ; 7,8$ and 9 comes from a single cycle in g_{s} and 13,14 and 15 comes from a single cycle of g_{v}.

$$
\text { The }\left|\operatorname{Stab}_{G}([1,2,3],[7,8,9],[13,14,15])\right|=27
$$

By Orbit-Stabilizer Theorem,

$$
\begin{aligned}
& \left|\operatorname{Orb}_{G}([1,2,3],[7,8,9],[13,14,15])\right|=\left|G: \operatorname{Stab}_{G}([1,2,3],[7,8,9],[13,14,15])\right| \\
& =\frac{|G|}{\left|\operatorname{Stab}_{G}([1,2,3],[7,8,9],[13,14,15])\right|} \\
& =\frac{46656000}{27}=1728000=\left|P^{[3]} \times S^{[3]} \times V^{[3]}\right|
\end{aligned}
$$

Therefore, $A_{6} \times A_{6} \times A_{6}$ acts transitively on $P^{[3]} \times S^{[3]} \times V^{[3]}$.

Lemma 2.3: The action of $A_{7} \times A_{7} \times A_{7}$ on $P^{[3]} \times S^{[3]} \times V^{[3]}$ is transitive.

Proof: Let $G=A_{7} \times A_{7} \times A_{7}$ act on $P^{[3]} \times S^{[3]} \times V^{[3]}$ where;
gap> Arrangements([1,2,3,4,5,6,7],3); $P^{[3]}=\{[1,2,3],[1,2,4],[1,2,5],[1,2,6],[1,2,7],[1,3,2],[$ $1,3,4],[1,3,5],[1,3,6],[1,3,7],[1,4,2],[1,4,3],[1,4,5],[1,4,6],[1,4,7],[1,5,2],[1,5,3]$, $[1,5,4],[1,5,6],[1,5,7],[1,6,2],[1,6,3],[1,6,4],[1,6,5],[1,6,7],[1,7,2],[1,7,3],[1,7,4$], [1, 7, 5], [1, 7, 6], [2, 1, 3], [2, 1, 4], [2, 1, 5], [2, 1, 6], [2, 1, 7], [2, 3, 1], [2, 3, 4], [2, 3, 5], [2, 3, $6],[2,3,7],[2,4,1],[2,4,3],[2,4,5],[2,4,6],[2,4,7],[2,5,1],[2,5,3],[2,5,4],[2,5,6],[2$, $5,7],[2,6,1],[2,6,3],[2,6,4],[2,6,5],[2,6,7],[2,7,1],[2,7,3],[2,7,4],[2,7,5],[2,7,6],[$ $3,1,2],[3,1,4],[3,1,5],[3,1,6],[3,1,7],[3,2,1],[3,2,4],[3,2,5],[3,2,6],[3,2,7],[3,4,1]$, $[3,4,2],[3,4,5],[3,4,6],[3,4,7],[3,5,1],[3,5,2],[3,5,4],[3,5,6],[3,5,7],[3,6,1],[3,6,2$], [3, 6, 4$],[3,6,5],[3,6,7],[3,7,1],[3,7,2],[3,7,4],[3,7,5],[3,7,6],[4,1,2],[4,1,3],[4,1$, $5],[4,1,6],[4,1,7],[4,2,1],[4,2,3],[4,2,5],[4,2,6],[4,2,7],[4,3,1],[4,3,2],[4,3,5],[4$, $3,6],[4,3,7],[4,5,1],[4,5,2],[4,5,3],[4,5,6],[4,5,7],[4,6,1],[4,6,2],[4,6,3],[4,6,5],[$ $4,6,7],[4,7,1],[4,7,2],[4,7,3],[4,7,5],[4,7,6],[5,1,2],[5,1,3],[5,1,4],[5,1,6],[5,1,7]$, $[5,2,1],[5,2,3],[5,2,4],[5,2,6],[5,2,7],[5,3,1],[5,3,2],[5,3,4],[5,3,6],[5,3,7],[5,4,1$
 $2],[5,7,3],[5,7,4],[5,7,6],[6,1,2],[6,1,3],[6,1,4],[6,1,5],[6,1,7],[6,2,1],[6,2,3],[6$, $2,4],[6,2,5],[6,2,7],[6,3,1],[6,3,2],[6,3,4],[6,3,5],[6,3,7],[6,4,1],[6,4,2],[6,4,3],[$ $6,4,5],[6,4,7],[6,5,1],[6,5,2],[6,5,3],[6,5,4],[6,5,7],[6,7,1],[6,7,2],[6,7,3],[6,7,4$], [$6,7,5],[7,1,2],[7,1,3],[7,1,4],[7,1,5],[7,1,6],[7,2,1],[7,2,3],[7,2,4],[7,2,5],[7,2$, $6],[7,3,1],[7,3,2],[7,3,4],[7,3,5],[7,3,6],[7,4,1],[7,4,2],[7,4,3],[7,4,5],[7,4,6],[7$, $5,1],[7,5,2],[7,5,3],[7,5,4],[7,5,6],[7,6,1],[7,6,2],[7,6,3],[7,6,4],[7,6,5]\} ;$
gap> Arrangements([8,9,10,11,12,13,14],3); $S^{[3]}=\{[8,9,10],[8,9,11],[8,9,12],[8,9,13],[8,9,14]$, $[8,10,9],[8,10,11],[8,10,12],[8,10,13],[8,10,14],[8,11,9],[8,11,10],[8,11,12],[8,11,13$], [$8,11,14],[8,12,9],[8,12,10],[8,12,11],[8,12,13],[8,12,14],[8,13,9],[8,13,10],[8,13$, $11],[8,13,12],[8,13,14],[8,14,9],[8,14,10],[8,14,11],[8,14,12],[8,14,13],[9,8,10],[9,8$, $11],[9,8,12],[9,8,13],[9,8,14],[9,10,8],[9,10,11],[9,10,12],[9,10,13],[9,10,14],[9,11,8$], [$9,11,10],[9,11,12],[9,11,13],[9,11,14],[9,12,8],[9,12,10],[9,12,11],[9,12,13],[9,12$, $14],[9,13,8],[9,13,10],[9,13,11],[9,13,12],[9,13,14],[9,14,8],[9,14,10],[9,14,11],[9$, $14,12],[9,14,13],[10,8,9],[10,8,11],[10,8,12],[10,8,13],[10,8,14],[10,9,8],[10,9,11],[$ $10,9,12],[10,9,13],[10,9,14],[10,11,8],[10,11,9],[10,11,12],[10,11,13],[10,11,14],[10$, 12,8], [$10,12,9$], [$10,12,11$], [$10,12,13$], [$10,12,14$], [$10,13,8$], [$10,13,9$], [$10,13,11$], [10, 13, 12], [$10,13,14$], [$10,14,8$], [10, 14, 9], [10, 14, 11], [10, 14, 12], [10, 14, 13], [11, 8, 9], [11, 8, 10], $[11,8,12],[11,8,13],[11,8,14],[11,9,8],[11,9,10],[11,9,12],[11,9,13],[11,9,14],[11,10,8$], [11, 10, 9], [11, 10, 12], [11, 10, 13], [11, 10, 14], [11, 12, 8], [11, 12, 9], [11, 12, 10], [11, 12, 13], [$11,12,14],[11,13,8],[11,13,9],[11,13,10],[11,13,12],[11,13,14],[11,14,8],[11,14,9],[11$, 14,10], [11, 14, 12], [11, 14, 13], [12, 8, 9], [12, 8, 10], [12, 8, 11], [12, 8, 13], [12, 8, 14], [12, 9, 8], $[12,9,10],[12,9,11],[12,9,13],[12,9,14],[12,10,8],[12,10,9],[12,10,11],[12,10,13],[12$, $10,14],[12,11,8],[12,11,9],[12,11,10],[12,11,13],[12,11,14],[12,13,8],[12,13,9],[12,13$, 10], [12, 13, 11], [$12,13,14$], [12, 14, 8], [12, 14, 9], [12, 14, 10], [12, 14, 11], [$12,14,13$], [13, 8, 9], [13, 8, 10], [13, 8, 11], [13, 8, 12], [13, 8, 14], [13, 9, 8], [13, 9, 10], [13, 9, 11], [13, 9, 12], [13, 9, $14],[13,10,8],[13,10,9],[13,10,11],[13,10,12],[13,10,14],[13,11,8],[13,11,9],[13,11,10]$, [13, 11, 12], [13, 11, 14], [13, 12, 8], [13, 12, 9], [13, 12, 10], [13, 12, 11], [13, 12, 14], [13, 14, 8], [$13,14,9],[13,14,10],[13,14,11],[13,14,12],[14,8,9],[14,8,10],[14,8,11],[14,8,12],[14,8$, 13], [14, 9, 8], [14, 9, 10], [14, 9, 11], [14, 9, 12], [14, 9, 13], [14, 10, 8], [14, 10, 9], [14, 10, 11], [$14,10,12],[14,10,13],[14,11,8],[14,11,9],[14,11,10],[14,11,12],[14,11,13],[14,12,8],[$ $14,12,9],[14,12,10],[14,12,11],[14,12,13],[14,13,8],[14,13,9],[14,13,10],[14,13,11],[$ 14, 13, 12]\};
and
gap> Arrangements $([15,16,17,18,19,20,21], 3) ; V^{[3]}=\{[15,16,17],[15,16,18],[15,16,19],[15,16,20]$, $[15,16,21],[15,17,16],[15,17,18],[15,17,19],[15,17,20],[15,17,21],[15,18,16],[15,18,17$], [15, 18, 19], [15, 18, 20], [15, 18, 21], [15, 19, 16], [15, 19, 17], [15, 19, 18], [15, 19, 20], [15, 19, 21], [15, 20, 16], [15, 20, 17], [15, 20, 18], [15, 20, 19], [15, 20, 21], [15, 21, 16], [15, 21, 17], [15, 21, 18], [15, 21, 19], [15, 21, 20], [16, 15, 17], [16, 15, 18], [16, 15, 19], [16, 15, 20], [16, 15, 21], [16, 17, 15], [16, 17, 18], [16, 17, 19], [16, 17, 20], [16, 17, 21], [16, 18, 15], [16, 18, 17], [16, 18, 19], [16, 18, 20], [16, 18, 21], [16, 19, 15], [16, 19, 17], [16, 19, 18], [16, 19, 20], [16, 19, 21], [16, 20, 15], [16, 20, 17], [16, 20, 18], [16, 20, 19], [16, 20, 21], [16, 21, 15], [16, 21, 17], [16, 21, 18], [16, 21, 19], [16, 21, 20], [17, 15, 16], [17, 15, 18], [17, 15, 19], [17, 15, 20], [17, 15, 21], [17, 16, 15], [17, 16, 18], [17, 16, 19], [17, 16, 20], [17, 16, 21], [17, 18, 15], [17, 18, 16], [17, 18, 19], [17, 18, 20], [$17,18,21],[17,19,15],[17,19,16],[17,19,18],[17,19,20],[17,19,21],[17,20,15],[17,20,16]$, [17, 20, 18], [17, 20, 19], [17, 20, 21], [17, 21, 15], [17, 21, 16], [17, 21, 18], [17, 21, 19], [17, 21, 20], [18, 15, 16], [18, 15, 17], [18, 15, 19], [18, 15, 20], [18, 15, 21], [18, 16, 15], [18, 16, 17], [18, 16, 19], [18, 16, 20], [18, 16, 21], [18, 17, 15], [18, 17, 16], [18, 17, 19], [18, 17, 20], [18, 17, 21], [18, 19, 15], [18, 19, 16], [18, 19, 17], [18, 19, 20], [18, 19, 21], [18, 20, 15], [18, 20, 16], [18, 20, 17], [18, 20, 19], [18, 20, 21], [18, 21, 15], [18, 21, 16], [18, 21, 17], [18, 21, 19], [18, 21, 20], [19, 15, 16], [19, 15, 17], [19, 15, 18], [19, 15, 20], [19, 15, 21], [19, 16, 15], [19, 16, 17], [19, 16, 18], [19, 16, 20], [19, 16, 21], [19, 17, 15], [19, 17, 16], [19, 17, 18], [19, 17, 20], [19, 17, 21], [19, 18, 15], [19, 18, 16], [19, 18, 17], [19, 18, 20], [19, 18, 21], [19, 20, 15], [19, 20, 16], [19, 20, 17], [19, 20, 18], [19, 20, 21], [19, 21, 15], [19, 21, 16], [19, 21, 17], [19, 21, 18], [19, 21, 20], [20, 15, 16], [20, 15, 17], [$20,15,18$], [$20,15,19],[20,15,21],[20,16,15],[20,16,17],[20,16,18],[20,16,19],[20,16,21]$, [20, 17, 15], [20, 17, 16], [20, 17, 18], [20, 17, 19], [20, 17, 21], [20, 18, 15], [20, 18, 16], [20, 18, 17], [20, 18, 19], [20, 18, 21], [20, 19, 15], [20, 19, 16], [20, 19, 17], [20, 19, 18], [20, 19, 21], [20, 21, 15], [20, 21, 16], [20, 21, 17], [20, 21, 18], [20, 21, 19], [21, 15, 16], [21, 15, 17], [21, 15, 18], [21, 15, 19], [21, 15, 20], [21, 16, 15], [21, 16, 17], [21, 16, 18], [21, 16, 19], [21, 16, 20], [21, 17, 15], [$21,17,16],[21,17,18],[21,17,19],[21,17,20],[21,18,15],[21,18,16],[21,18,17],[21,18,19]$, [21, 18, 20], [21, 19, 15], [21, 19, 16], [21, 19, 17], [21, 19, 18], [21, 19, 20], [21, 20, 15], [21, 20, 16], [21, 20, 17], [21, 20, 18], [21, 20, 19]\}.

The cartesian product of $P^{[3]} \times S^{[3]} \times V^{[3]}$ is generated using the GAP software with, $\left|P^{[3]} \times S^{[3]} \times V^{[3]}\right|=$ 9261000 . G is generated by
$<\{(1234567),(123)\},\{(891011121314),(8910)\},\{(15161718192021),(151617)\}>\quad$ using the GAP software. $([1,2,3],[8,9,10],[15,16,17])$ is fixed by an element $\left(g_{p}, g_{s}, g_{v}\right) \in G$ if and only if 1,2 and 3 comes from a single cycle of $g_{p} ; 8,9$ and 10 comes from a single cycle of g_{s} and 15,16 and 17 comes from a single cycle of g_{v}.

$$
\text { The }\left|\operatorname{Stab}_{G}([1,2,3],[8,9,10],[15,16,17])\right|=1728
$$

By Orbit-Stabilizer Theorem,

$$
\begin{aligned}
& \left|\operatorname{Orb}_{G}([1,2,3],[8,9,10],[15,16,17])\right|=\left|G: \operatorname{Stab}_{G}([1,2,3],[8,9,10],[15,16,17])\right| \\
& =\frac{|G|}{\left|\operatorname{Stab}_{G}([1,2,3],[8,9,10],[15,16,17])\right|} \\
& =\frac{16003008000}{1728}=9261000=\left|P^{[3]} \times S^{[3]} \times V^{[3]}\right|
\end{aligned}
$$

Therefore, $A_{7} \times A_{7} \times A_{7}$ acts transitively on $P^{[3]} \times S^{[3]} \times V^{[3]}$.
Theorem 2.4: The action of $A_{n} \times A_{n} \times A_{n}$ on $P^{[3]} \times S^{[3]} \times V^{[3]}$ is transitive if and only if $n \geq 5$.
Proof: Let $G=G_{p} \times G_{s} \times G_{v}=A_{n} \times A_{n} \times A_{n}$ act on $P^{[3]} \times S^{[3]} \times V^{[3]}$. It suffices to verify that $\mid P^{[3]} \times$ $S^{[3]} \times V^{[3]} \mid$ is equal to $\left|\operatorname{Orb}_{G}([1,2,3],[n+1, n+2, n+3],[2 n+1,2 n+2,2 n+3])\right|$.

Let $|R|=\left|\operatorname{Stab}_{G}([1,2,3],[n+1, n+2, n+3],[2 n+1,2 n+2,2 n+3])\right|$.
So, $\left(g_{p}, g_{s}, g_{v}\right) \in G=A_{n} \times A_{n} \times A_{n}$ fixes $\quad([1,2,3],[n+1, n+2, n+3],[2 n+1,2 n+2,2 n+3]) \in P^{[3]} \times$ $S^{[3]} \times V^{[3]}$ if and only if 1,2 and 3 comes from l-cycle of $g_{p} ; n+1, n+2$ and $n+3$ comes from 1 -cycle of g_{s} and $2 n+1,2 n+2$ and $2 n+3$ comes from 1 -cycle of g_{v}.

The $\operatorname{Stab}_{G}([1,2,3],[n+1, n+2, n+3],[2 n+1,2 n+2,2 n+3])$ is isomorphic to: $A_{n-3} \times A_{n-3} \times A_{n-3}$.
Therefore $\quad \quad|R|=\left|\operatorname{Stab}_{G}([1,2,3],[n+1, n+2, n+3],[2 n+1,2 n+2,2 n+3])\right|=\mid \operatorname{Stab}_{G_{p}}([1,2,3]) \times$ $\operatorname{Stab}_{G_{s}}([n+1, n+2, n+3]) \times \operatorname{Stab}_{G_{v}}([2 n+1,2 n+2,2 n+3]) \mid$

$$
|R|=\frac{(n-3)!\times(n-3)!\times(n-3)!}{2 \times 2 \times 2}=\left(\frac{(n-3)!}{2}\right)^{3}
$$

Applying the Orbit-Stabilizer Theorem we get;

$$
\begin{aligned}
& \left|\operatorname{Orb}_{G}([1,2,3],[n+1, n+2, n+3],[2 n+1,2 n+2,2 n+3])\right| \\
& =\left|G: \operatorname{Stab}_{G}([1,2,3],[n+1, n+2, n+3],[2 n+1,2 n+2,2 n+3])\right| \\
& \quad|G|=\frac{n!\times n!\times n!}{2 \times 2 \times 2}=\left(\frac{n!}{2}\right)^{3} \\
& \quad \frac{|G|}{|R|}=\frac{\left(\frac{n!}{2}\right)^{3}}{\left(\frac{(n-3)!}{2}\right)^{3}}=\left(\frac{n!}{(n-3)!}\right)^{3} .
\end{aligned}
$$

Therefore;

$$
\frac{|G|}{|R|}=\left(\frac{n!}{(n-3)!}\right)^{3}=\left|P^{[3]} \times S^{[3]} \times V^{[3]}\right|
$$

Hence, $A_{n} \times A_{n} \times A_{n}$ acts transitively on $P^{[3]} \times S^{[3]} \times V^{[3]}$ if $n \geq 5$.

Corollary 2.5: For $n<5$, the
$\left|\operatorname{Stab}_{G}([1,2,3],[n+1, n+2, n+3],[2 n+1,2 n+2,2 n+3])\right|=\left|A_{n-3} \times A_{n-3} \times A_{n-3}\right|<1$.

4. Conclusion

The cartesian product of the alternating group $A_{-} n(n \geq 5)$ acting on a cartesian product of ordered sets of triples has been determined to be transitive using the Orbit-Stabilizer Theorem by showing that the length of the orbit (p, s, v) in $A_{n} \times A_{n} \times A_{n},(n \geq 5)$ acting on $P^{[3]} \times S^{[3]} \times V^{[3]}$ is equivalent to the cardinality of $P^{[3]} \times$ $S^{[3]} \times V^{[3]}$ to imply transitivity.

Disclaimer

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

Competing Interests

Authors have declared that no competing interests exist.

References

[1] Kinyanjui J. N, Musundi S. W, Rimberia J, Sitati N.I, Makila P. Transitivity Action of $A_{n}(n=5,6,7,8)$ on ordered and unordered pairs. IJMA. 2013;4(9):77-88.
[2] Njagi L. K. Ranks, subdegrees and suborbital graphs of symmetric group S_{n} acting on ordered pairs. Journal of advance research in applied science. 2016;2208-2352),3(2):51-70.
[3] Rose J. S. A Course in Group Theory. Cambridge University Press, Cambridge; 1978.
[4] Cameron P. J, Gewurz D. A, Merola F. Product action. Discrete Math. 2008;386-394.
[5] Krishnamurthy V. Combinatorics, theory and applications. Affliated East West Pressprivate Limited, New Delhi; 1985.
[6] Armstrong. Groups and symmetry. Springer-Verlag, New York Inc; 2013.
[7] Higman D. G. Finite permutation groups of rank 3. Math Zeitschriff. 1964;86:145156.
[8] Ndarinyo CW, Rimberia JK. Transitivity Action of $A_{n}(n=5,6,7)$ on Unordered and Ordered Triples. IJMSE. 2015;6(7);21-27.
[9] Nyaga L. N. Transitivity of the direct product of the Alternating group acting on the cartesian product of three sets. International journal of mathematics and its applications, (ISSN:2347-1557), rn. 2018;55, 7.
[10] Muriuki G. D, Namu N. L, Kagwiria R. J. Ranks, sub degrees and suborbital graphs of direct product of the symmetric group acting on the cartesian product of three sets. Pure and Applied Mathematics Journal. 2017; 6(1):1.
[11] Mutua A. K, Nyaga L. N, Gachimu R. K. Combinatorial properties, invariants and structures of the action of $S_{n} \times A_{n}$ on $X \times Y$. International Journal of Sciences: Basic and Applied Research (IJSBAR). 2018;40(2):109-115.
© 2021 Moses et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
https://www.sdiarticle5.com/review-history/79636

[^0]: *Corresponding author: Email: swmusundi@chuka.ac.ke;

