International Journal of Modern Mathematical Sciences
ISSN:2166-286X
Journal homepage:www.ModernScientificPress.com/Journals/ijmms.aspx
Article
Norm- Attainability of Generalized Finite Operators on C*Algebra

Amenya C. Sule, Musundi W. Sammy*, Kirimi Jacob
Department of Physical Sciences, Chuka University; P.O. Box 109-60400 Chuka, Kenya

* Author to whom correspondence should be addressed: swmusundi@chuka.ac.ke.com

Article history: Received 28 February 2022, revised 3 June 2022, Accepted 3 June 2022, Published 10 June 2022.

Abstract

Norm -attainability of elementary operators on Hilbert and Banach spaces have been Characterized by many mathematicians. However, there is little information on Normattainability of generalized finite operators on C^{*}-algebra. A pair of bounded linear operators A, B on a complex Hilbert space H is called generalized finite operators if $\| A X-X B-$ $I \| \geq 1$ for each $x \in B(H)$. This paper therefore determines the norm attainability of these generalized finite operators on C^{*}-algebra when implemented by norm attainable operators A, B.

Keywords: Generalized finite operators; Norm attainability; C*-algebra; Complex Hilbert space

Mathematics Subject Classification (2010): 47C10; 47B38;

1. Introduction

Let H be a complex Hilbert space, $B(H)$ be the collection of bounded linear operators on H with inner product space and $G F$ be the set of norm attainable generalized finite operators, the inner derivation is defined by $\delta_{A} \epsilon(X)=\|A X-X A\|$, and the generalized derivation by $\delta_{A B}(X)=\|A X-X B\|$, while the generalized finite operator $\|A X-X B-I\| \geq 1$ is said to be norm attainable, if for every pair of operators $A, B \in B(H)$ implementing the generalized finite operators are norm attainable and there exists
a scalar q and some unit sequence Z_{n} such that $\left\|Z_{n}\right\|=1,|\mathrm{q}|=1$ and $\left\|(A-q) * Z_{n}\right\|<\frac{1}{n}$, and $\|(B-$ q) $Z_{n}\left\|>\frac{1}{n}\right\|$.

Definition 1.1 Involution on algebra, (Gelfand et al. 1943)

If A is an algebra, a mapping $*: A \rightarrow A$, defined by $x \rightarrow x^{*}$ is called an involution on algebra A if it satisfies the following four conditions; $\forall x, y \epsilon A$.
i) $(x+y)^{\bar{*}}=x^{*}+y^{*}$
ii) $(\lambda x)^{*}=\lambda x^{*}$
iii) $(x y)^{*}=y^{*} x^{*}$
iv) $\left(x^{*}\right)^{*}=x^{* *}=x$

If A is a Banach algebra with an involution and, for every $\forall x \in A\left\|x^{*} x\right\|=\|x\|^{2}$, then A is called C^{*}-algebra .

Example of C^{*}-algebra (Gelfand et al. 1943)

Let $B(H)$ be a collection of bounded linear operators on a complex Hilbert space H, with inner product space, then $B(H)$ is a C^{*}-algebra.

Definition 1.2 Generalized finite operators (Mecheri 2005)

Given pairs of operators $(A, B) \in B(H) \times B(H):\|A X-X B-I\| \geq 1$ is a generalized finite operator

Definition 1.3 Norm attainable operator (Okelo 2020)

An operator $A \in B(H)$ is said to be norm- attainable if for every unit vector $x \in H$ it then follows $\|A x\|=$ $\|A\|$.

2. Main Results

Theorem 2.1 (Okelo 2018)

Let $S, T \in B(H)$ if both S and T are norm attainable then the basic elementary operator $M_{S T}$ is also norm attainable.

The lemma below gives the result on norm attainability of inner derivative.

Lemma 2.2

Let H be a complex Hilbert space, $B(H)$ be the collection of bounded linear operators on H with, inner product space and $G F$ be the set of norm-attainable generalized finite operators, if there exists a scalar q and some sequence Z_{n} such that $\left\|Z_{n}\right\|=1,|\mathrm{q}|=1$ and $\left\|(A-q) * Z_{n}\right\|<\frac{1}{n} \quad A X \rightarrow-A X$ then the inner derivation $\delta_{A} \epsilon G F$ is said to be norm-attainable.

Proof

We define inner derivative δ_{A} as $\delta_{A}(X)=\|A X-X A\|$, from $\left\|(A-q) * Z_{n}\right\|<\frac{1}{n}$, when $\mathrm{n} \geq 1$, then we will have,

$$
\begin{aligned}
\|A X-X A\|^{2} & =\left\|(A-q)^{*} X Z_{n}-Z_{n}\right\|^{2}-\left\|X(A-q) Z_{n}\right\|^{2} \\
& =\left\|(A X-q X) Z_{n}-Z_{n}\right\|^{2}-\left\|(A X-q X) Z_{n}\right\|^{2} \\
& =\left\|(A X-q X) Z_{n}\right\|^{2}+1-\left\{\left\|(A X-q X) Z_{n}\right\|^{2}\right\} \\
& =\|(A X-q X)\|^{2}\left\|Z_{n}\right\|^{2}+1-\left\{\|\left(A X-q X\left\|^{2}\right\| Z_{n} \|^{2}\right\}\right. \\
& =\|A X\|^{2}-\|X\|^{2}|q|^{2}+1-\left\{\|A X\|^{2}-\|X\|^{2}|q|^{2}\right\} \\
& =\|A X-(-A X)+q X\|^{2} \\
& =\|A X+A X+q X\|^{2}
\end{aligned}
$$

For the positive square roots of the equation, the result is,

$$
\begin{aligned}
\|A X-X A\| & =\|A X+A X+q X\| \\
& =\|2 A X+q X\| \\
& =2| | A X\|+\| q X \| \\
& =2| | A \mid \|+1
\end{aligned}
$$

Implying that $||A X-X A||=2| | A| |+1=\delta_{A}$.

Since operator A is norm attainable, it then follows that the inner derivative δ_{A} is norm attainable. Next we give the conditions for norm attainability of generalized derivative $\delta_{A B}$.

Lemma 2.3

Let H be a complex Hilbert space, $B(H)$ be the collection of bounded linear operators on H, with inner product space and $G F$ be the set of norm-attainable generalized finite operators, the generalized derivative $\delta_{A B} \epsilon G F$ is norm attainable if there exists some scalar q and a unit sequence Z_{n} such that $\left\|Z_{n}\right\|=1,|q|=1,\left\|(A-q)^{*} Z_{n}\right\|>\frac{1}{n}$ and $\left\|(B-q) Z_{n}\right\|>\frac{1}{n}$

Proof

We define a generalized derivative $\delta_{A B}$ as $\delta_{A B}(X)=\|A X-X B\|$ for every $x \in B(H)$

It then follows that

$$
\begin{align*}
\|A X-X B\|^{2}= & \left\|(A-q) X Z_{n}-Z_{n}\right\|^{2}-\left\{\left\|X(B-q) Z_{n}\right\|^{2}\right\} \\
= & \left\{\left\|(A X-q X) Z_{n}\right\|^{2}-\left\|Z_{n}\right\|^{2}\right\}-\left\{\left\|(B X-q X) Z_{n}\right\|^{2}\right\} \\
& =\|\left(A X-q X\left\|^{2}-\right\| Z_{n} \|^{2}-\left\{\|(B X-q X)\|^{2}\right.\right. \\
& =\left\|A X-q X-Z_{n}\right\|^{2}-\|(B X-q X)\|^{2} \\
& =\left\|A X-q X-Z_{n}-B X+q X\right\|^{2} \tag{i}\\
& =\left\|A X-B X-Z_{n}-q X+q X\right\|^{2} \\
& =\left\|A X-B X-Z_{n}\right\|^{2}
\end{align*}
$$

For the positive square roots of the equation, the result is,

Implying that $\quad\|A X-X B\|=\|A\|-\|B\|+1$

From equation (i) we get the inequality

$$
\|A X-X B\|^{2} \geq\left\|A X-q X-Z_{n}-B X+q X\right\|^{2}
$$

Implying that,

$$
\begin{align*}
\|A X-X B\| & \geq\|A X-B X-q X\| \\
& \geq\|A\|-\|B\|+1 \tag{iii}
\end{align*}
$$

For the reverse inequality, from equation (i), we have

$$
\begin{aligned}
\|A X-X B\|^{2} & \leq\left\|A X+q X+Z_{n}-B X-q X\right\|^{2} \\
& \leq\left\|A X-B X+Z_{n}+q X-q X\right\|^{2} \\
& \leq\left\|A X-B X+Z_{n}\right\|^{2}
\end{aligned}
$$

For the positive square root of the equation, the result is,

$$
\begin{align*}
|\mid A X-X B \| & \leq\|A X| |-\| B X\|+\| Z_{n} \| \\
& \leq\|A\|-\|B\|+1 \tag{iv}
\end{align*}
$$

From equation (iii) and (iv) we get

$$
\|A X-X B\|=\|A\|-\|B\|+1
$$

Hence $\left|\mid A X-X B\|=\| A\|-\| B \|+1=\delta_{A B}\right.$. Therefore $\delta_{A B}$ is norm attainable since A and B are norm attainable.

The next theorem gives the main results of our study on norm attainability of generalized finite operators.

Theorem 2.4

Let H be a complex Hilbert space, $B(H)$ be the collection of bounded linear operators on H with inner product space and $A, B \in G F$, if A and B are norm attainable, then the generalized finite operators $(A B) \epsilon B(H) \times B(H):\|A X-X B-I\| \geq 1$ is norm attainable.

Proof

For the operators $A, B \in B(H)$, it is known from lemma 2.3 that $\|A X-X B\|=\|A\|-\|B\|+1$
We let $\left\|Z_{n}\right\|=1,|q|=1,\left\|(A-q)^{*} Z_{n}\right\|>\frac{1}{n}$ and $\left\|(B-q) Z_{n}\right\|>\frac{1}{n}$
Now for every $\mathrm{n} \geq 1$, then we will have

$$
\begin{align*}
& \| A X-X B-I \| \geq \operatorname{Sup}\left\{\left\|(A X-X B-I) Z_{n}\right\|\right\} \\
& \geq \operatorname{Sup}\left\{\left\|(A-q) X Z_{n}-Z_{n}\right\|-\left\|X(B-q) Z_{n}\right\|+1\right\} \\
& \quad \geq \operatorname{Sup}\{\|A\|-\|B\|+1\} \tag{i}
\end{align*}
$$

Implying that $\|A X-X B-I\| \geq\|A\|-\|B\|+1$
For the reverse inequality,

$$
\begin{align*}
\|A X-X B-I\| \leq & \operatorname{Sup}\left\{\left\|(A-q) X Z_{n}-Z_{n}\right\|-\left\|X(B-q) Z_{n}\right\|+1\right\} \\
\leq & \operatorname{Sup}\{\|A X\|+|q|\|X\|-[\|B X\|+\mid q\| \| X \|]+1\} \\
& \leq \operatorname{Sup}\{\|A\|-\|B\|+1-1+1 \\
& \leq \operatorname{Sup}\{\|A\|-\|B\|+1\} \tag{ii}
\end{align*}
$$

Implying that, $|\mid A X-X B-I\|\leq\| A\|-\| B \|+1$
From equation (i) and (ii) we get

$$
|\mid A X-X B-I\|=\| A\|-\| B \|+1
$$

Therefore the generalized finite operator $A, B \in B(H):\|A X-X B-I\| \geq 1$ is norm attainable.

3. Conclusion

The generalized finite operators $(A B) \epsilon B(H) \times B(H):\|A X-X B-I\| \geq 1$ is norm attainable when implemented by norm attainable operators A, B.

References

[1] Blanco, A., Boumazgour, M., \& Ransford, T. J.; On the Norm of Elementary Operators. Journal of the London Mathematical Society, 70(2)(2004): 479-498.
[2] Fujimoto, I. A Gelfand-Naimark Theorem for C^{*}-algebras. Pacific Journal of Mathematics, 184(1)(1998): 95-119.
[3] Kawira, E., Kingangi, D. \& Musundi, S. W. On The Norm of an Elementary Operator of Finite Length in AC*Algebra, (2018).
[4] Kinyanjui, J. N., Okelo, N. B., Ongati, O., \& Musundi, S. W. Norm Estimates for Norm-Attainable Elementary Operators. International Journal of Mathematical Analysis, 12(3) (2018): 137-144.
[5] Mecheri, S. Generalized Finite Operators. Demonstration Mathematica, 38(1)(2005): 163-168.
[6] Okelo B. Norm-Attainability and Range-Kernel Orthogonality of Elementary Operators. Communications in Advanced Mathematical Sciences, 1(2) (2018): 91-98.
[7] Okelo, N. B., Agure, J. O., \& Ambogo, D. O. Norms of Elementary Operators and Characterization of Norm-attainable Operators. Int. J. Math. Anal, 24(2010): 1197-1204.
[8] Okelo, B. N. The Norm Attainability of Some Elementary Operators, (2012).
[9] Okelo, N. B. On Norm-Attainable Operators in Banach Spaces. Journal of Function Spaces, (2020).
[10] Okwany, I. O., Okelo, N. B., \& Ongati, O. Norm Estimates for Hermitian Derivations. Pure and Applicable Analysis, 2022(2022): 2-2.
[11] Stampfli, J. The Norm of a Derivation. Pacific Journal of Mathematics, 33(3)(1970): 737-747.
[12] Timoney, R. M. Some formulae for norms of elementary operators. Journal of Operator Theory, (2007): 121-145.

