
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

736 | P a g e
www.ijacsa.thesai.org

The Effect of Adaptive Learning Rate on the

Accuracy of Neural Networks

Jennifer Jepkoech1*, David Muchangi Mugo2, Benson K. Kenduiywo3, Edna Chebet Too4

University of Embu, P.O BOX 6 – 60100, Embu, Kenya1, 2

Jomo Kenyatta University of Science and Technology, P.O. Box 62 000 – 00200, Nairobi, Kenya3

Chuka University, P.O BOX 109-60400, Chuka, Kenya4

Abstract—Learning rates in gradient descent algorithms have

significant effects especially on the accuracy of a Capsule Neural

Network (CNN). Choosing an appropriate learning rate is still an

issue to date. Many developers still have a problem in selecting a

learning rate for CNN leading to low accuracies in classification.

This gap motivated this study to assess the effect of learning rate

on the accuracy of a developed (CNN). There are no predefined

learning rates in CNN and therefore it is hard for researchers to

know what learning rate will give good results. This work,

therefore, focused on assessing the effect of learning rate on the

accuracy of a CNN by using different learning rates and

observing the best performance. The contribution of this work is

to give an appropriate learning rate for CNNs to improve

accuracy during classification. This work has assessed the effect

of different learning rates and came up with the most

appropriate learning rate for CNN plant leaf disease

classification. Part of the images used in this work was from the

PlantVillage dataset while others were from the Nepal database.

The images were pre-processed then subjected to the original

CNN model for classification. When the learning rate was 0.0001,

the best performance was 99.4% on testing and 100% on

training. When the learning rate was 0.00001, the highest

performance was 97% on testing and 99.9% on training. The

lowest performance observed was 81% accuracy on testing and

99% on training when the learning rate was 0.001. This work

observed that CNN was able to achieve the highest accuracy with

a learning rate of 0.0001. The best Convolutional Neural

Network accuracy observed was 98% on testing and 100% on
training when the learning rate was 0.0001.

Keywords—CNN; ConvNet; learning rate; gradient descent

I. INTRODUCTION

Deep learning has been used over time for plant leaf
disease detection and classification. Some of the researchers
who have used deep learning include
[29,30,31,32,33,34,35,36,37,38,39]. Capsule neural networks
(CNN) are a regularly used neural network structure that has
significant effects on deep learning, particularly in computer
vision studies. CNN's have attained superhuman levels in
different computer task categories, for example, object
detection, classification, incidence segmentation, semantic
segmentation, and parsing. The learning rate is viewed as the
absolute hyper-parameter to tune and remarkably influence
model training with gradient descent algorithms [1, 2]. Studies
have come up with several learning rate techniques including
inverse square root decay, linear decay, exponential decay,
and cosine decay [3, 4]. These learning rates have varying
procedures that are based on an optimization problem. One of

the limitations involves the selection of a suitable learning rate
for a given application.

Practically, researchers have adopted a trial-and-error
method for various learning rates alongside diverse hyper-
parameters, which is a very tedious process [5]. This paper
utilizes a regulator that adapts three learning rate schedules of
0.001, 0.0001, and 0.00001. Existing learning rate schedules
adopt predefined parametric learning rate changes, which are
fixed regardless of prevailing training dynamics. The
predefined parametric learning rate changes have a limited
flexibility and may not be improved for the training dynamics
of various high dimensional and non-convex advancement
issues [6]. The context for this work provides adaptive meta-
learned learning rates that dynamically adjust to current
training. The process of training a neural network using an
algorithm, for example, the error back-propagation [1, 2, 3, 4]
is normally time-consuming, especially when working on
complex problems. These types of algorithms naturally have a
learning rate parameter that controls the extents by which the
weights can change based on an observed error that was noted
on the training set.

Learning rate schedules can dramatically affect the
accuracy of the results. Therefore, the process of choosing
learning rates using training algorithms can be problematic
especially when there is no guiding value for specific tasks.
Various algorithms have been used to tune the learning rate
parameters [6, 7, and 8], yet such strategies generally have
failed to concentrate on refining the resulting accuracy. Most
of the experts in neural networks use the highest learning rates
that allow merging. However, when learning rates are set too
high, it causes unwanted divergent behavior in the loss
function. Hence when the highest learning rates are applied to
complex and large problems, there is a negative effect on the
training process and accuracy. On the other hand, when the
learning rate is set too low, the training progress will be very
slow because very small updates are made to the weights of
the work [9]. So there is a need to balance and there is no
better way to do that other than to test several learning rates
and observe their performances. This work adopts the use of
online training instead of batch training. This is because batch
training needs more time compared to online training with no
corresponding improvement inaccuracy [5]. This paper aims
to investigate the effect of learning rate on the accuracy of
CNN's as applied in plant disease detection. Since Tensor flow
recommends a learning rate of 0.001, this works started by
using that learning rate and observed a low percentage of 84%

*Corresponding Author

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

737 | P a g e
www.ijacsa.thesai.org

accuracy in testing. It is from there that this work focused on
reducing the learning rate further to 0.0001 and then to
0.00001. A total of 24 experiments were conducted for plant
leaf disease classification using the three learning rates and
0.0001 gave the best classification results of 99.4% accuracy
on testing and 100% on training.

II. RELATED WORK

Hyperparameters such as batch size need adjusting before
capsule neural network training for image classification.
Studies on the effect of batch size and learning rates on neural
network accuracy have been conducted. The studies have tried
to determine the more efficient network performances related
to learning rates and the magnitude of batches.

According to [10] the default number batch size should be
32. The author noted that a large batch size and high learning
rates speed up the process of network performance but reduce
the number of updates needed to reach convergence. Batch
sizes do not affect the performance of the neural network but
influence the convergence time. Masters and Luschi [11]
studied the effect of batch sizes on ImageNet, CIFAR10, and
CIFAR100 datasets for two architectures of ResNet and
AlexNet. The batch sizes ranged between 21 and 211. The
results showed that the best accuracies were achieved from
batch sizes that ranged from 2 and 32. The study concluded
that large batch sizes are not efficient compared to small batch
sizes. Radiuk [12] also studied the effect of batch size on
network performance for the classification of images using
CIFAR-10 and MNIST datasets for the LeNet architecture.
The study used two learning rates of 0.0001 (CIFAR-10) and
0.001 (MNIST). The results showed that the highest accuracy
was obtained from the largest batch size with a lower learning
rate of 0.0001. This showed that batch size and learning rates
affect the performance of neural networks.

Several studies have proposed improved update schedules
for gradient descent algorithms [7, 8, 9, 13, 14, and 15]. In [7],
the need for direct learning of the gradient descent updates
through the use of the long short-term memory (LSTM)
network was proposed. Hyper gradient tends to assume the
learning rate derivative and subsequently updates it according
to its gradient [8]. Z. XU [9] proposed a reinforcement
learning-based framework that can auto-learn an adaptive
learning rate schedule according to the existing information
from historical training. This method puts into consideration
the whole training history while presenting a comprehensive
interpretation. Daniel [13] proposed the application of
reinforcement learning (RL) with a focus on learning rate
adaptation. This paper uses the learning rates as the action and
the reward indicator include validation loss. Duchi et al. [14]
used learning rate adaptation based on the weight and the total
number of gradient squares and obtained some results.
Kingma [15] used an exponentially decayed mean of historical
gradients.

Neural Networks are models with progressive layers of
neurons that have been in existence for quite a long time. They
can be trained in both Supervised and Unsupervised [16]
ways. In supervised training, a backpropagation algorithm was
created in the 1970s [17]. This algorithm utilizes a gradient
descent approach to compute the learning system of the neural

network. A gradient descent approach is commonly used in
neural networks to update parameters (𝜆 =
{1𝑒−1, 1𝑒−2, 1𝑒−3}). Such training is conducted to get to an
optimum point where the loss is at its minimum and the
expected and predicted values are almost similar [18].
Training a large neural network is a challenging task.
Sebastian [19] established the Stochastic Gradient Descent
(SGD) algorithm to accomplish an improved performance
during the training time using variable learning rates. Such
processes have been described as Adaptive Learning Rates/
Rate Scheduling [26]. Larger learning rates have also been
used by [27], who used a learning rate of 0.4 and achieved
75% accuracy. The results show a low accuracy rate which
most likely was caused by the high learning rate. Purnomo
[28] used 0.01 and observed that this learning rate led to low
accuracies

III. CONVOLUTIONAL NEURAL NETWORKS (CONVNETS)

When convolutional neural networks in Fig. 1 are applied
to disease detection, models demonstrate great performance.
The discussion below shows some great materials showing the
use of convolutional neural networks in the detection and
classification of plant diseases.

The authors in [59] used LeNet architecture [Le89]
architecture with CNN for the classification of banana leaf
disease. The images used were from Plantvillage which were
from homogeneous backgrounds. The results obtained,
according to the authors were good. The challenges
experienced were that in some splits, the model took more
time to converge, and practically, all the images cannot be
from uniform backgrounds.

Researchers in [60] used the digital color image analysis
discrimination method: The results were questionable because
of the existence of other leaves or weeds. Segmentation is not
fit to be used in the field because it will fail to effectively
extract the leaf from its background hence inaccurate results.
Alex Net and transfer learning were used by [61] to detect
common rice plant anomalies using CNN. During the
classification task, the approach never considered the specific
class of diseases that may affect rice plants. The authors also
used transfer learning on AlexNet which is a small and old
CNN architecture. Authors in [62] used segmentation method
in detecting soybean rust from multispectral images using
CNN. The results were questionable because of the existence
of other leaves or weeds. Segmentation is not fit to be used in
the field because it will fail to effectively extract the leaf from
its background hence inaccurate results. Author in [63] used
segmentation with CNN and there was a lot of reliability on
hand-crafted features such as color histograms, texture
features, shape features, and SIFT that require expensive work
and demand expert knowledge. The author in [64] used Gabor
filter for feature extraction and Artificial Neural Network
classifier for classification in real plant tomato leaf disease
recognition. They used images from homogeneous
backgrounds alone which practically is not true because there
must be other plants and weeds in farms. The author in [65]
used images from plant village alone and AlexNet architecture
for plant disease detection and they lacked the accuracy of
result because plant village dataset images have homogeneous

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

738 | P a g e
www.ijacsa.thesai.org

backgrounds while under normal conditions, images from the
field have heterogeneous backgrounds.

The authors in [65] utilized the convolutional neural
network to detect disease in plant leaves. In the research,
54306 images and 14 different species of plants were used
which later represented 26 diseases together with healthy
leaves. Furthermore, the authors used segmented, greyscale,
and colored images for model training and the accuracy was
99.35%. However, when tested on another dataset, the
accuracy fell to 31.4%. Real-Time captured images have
heterogonous backgrounds while the images from the plant
village dataset have a homogenous background. The author in
[66] used convolutional neural networks to recognize 13
plants of different species and detect disease in their leaves.
All the images utilized by the author were secondary images
fetched from the internet. Here, 15 classes were considered
and one class for the healthy leaves the accuracy was
measured at 88%. However, it was discovered that most of the
images from the website were mislabeled and differed greatly
from those taken from the field which later introduced a
mismatch error. The researcher in [67] used 87,848 images
with 25 different plant species and included healthy plants.
AlexNet, Over feat, GoogleNet and AlexNet were utilized in
the identification of plant leaf diseases from images captured
from the field. The aim was to be able to match the plant and
disease combination when a leaf image was provided. The
datasets here contained images from the laboratory and field
as well. The accuracy was found to be 99.53%. CNN gives
some results, but they have two major challenges, Pooling
layers, and Translation Invariance.

In research done by [68], CNN was used in detection and
classification. The technique used was transfer learning while
the coffee disease was classified as coffee leaf rust. The study
used an android profiler in determining resource consumption.
The researchers obtained some results. However, they
observed loss of data through Pooling.

IV. CAPSULE NEURAL NETWORKS (CNNS)

Capsules comprise neuron clusters that have vector
activities [21]. The activities are a representation of different
pose parameters while their vector lengths show the existence
of specific neuron elements. Most CNNs problems are
generally associated with the pooling layers. For capsule
networks, issues of pooling layers are corrected using the
“routing by agreement” procedure [22]. The procedure
involves adding neuron outputs to parent capsules in a
subsequent layer, though, they typically have different
coupling coefficients. The output of the parent capsules is
based on the prediction of an individual capsule. If a
prediction is consistent with the actual output of the parent
capsule, then there is an increase in the coupling coefficient
between the two capsule layers. Using capsule I that has ui as
its output, the prediction of an individual capsule i for parent
capsule j is as shown in equation 1.

Û𝑗|𝑖 = 𝑊𝑖𝑗 𝑢𝑖 (1)

where, Û𝑗|𝑖 is considered as the prediction vector of the jth

capsule output from a different layer resulting from capsule i,

and where 𝑊𝑖𝑗 is used as a weighting matrix after being

learned using the backward pass. The SoftMax equation can
after that be computed from the coupling coefficients 𝑐𝑖𝑗 as

shown in equation 2.

𝑐𝑖𝑗 =
𝑒𝑥𝑝 (𝑏𝑖𝑗)

∑ 𝑒𝑥𝑝(𝑏𝑖𝑘)𝑘
 (2)

Where the log probability is represented by 𝑏𝑖𝑗, which is

programmed initially as 0 before initiating the “routing by
agreement” process. The computation for adding a vector
neuron to the parent capsule j is shown in equation 3.

𝑠𝑗 = ∑ 𝑐𝑖𝑗 Û𝑗|𝑖 𝑖 (3)

Subsequently, there is a need to use a non-linear equation
(4) to prevent capsule vectors from producing more than one
output and creating the final output of an individual capsule.

𝑣𝑗 =
║𝑠𝑗║)²

1+║𝑠𝑗║²

𝑠𝑗

║𝑠𝑗║
 (4)

where, 𝑣𝑗 is the output of capsule j, and 𝑠𝑗 is the input

vector. The “routing by agreement” process allows for an
updating of the log probabilities considering the agreement

set between 𝑣𝑗 and Û𝑗|𝑖. When the two capsule vectors are in

agreement, then they will produce a larger inner output.
Equation (5) shows an agreement 𝑎𝑖𝑗 that is necessary for the

updating of coupling coefficients and log probabilities.

𝑎𝑖𝑗 = 𝑣𝑗 . Û𝑗|𝑖 (5)

For equation 6, individual capsule k in the final layer is
related to 𝑙k, which is a loss function. The function adds high
loss values on individual capsules that have long output
instantiation parameters when there is a missing entity.

𝑙𝑘 = 𝑇𝑘 𝑚𝑎𝑥 (0, 𝑚+ − ║𝑣𝑘║)² + 𝜆(1 −
𝑇𝑘) 𝑚𝑎𝑥 (0, ║𝑣𝑘║ − 𝑚−)²

 (6)

When class k exists, 𝑇𝑘 is 1. Otherwise when class k is
absent 𝑇𝑘 is 0. Hyperparameters 𝑚−, 𝜆 and 𝑚+ are used
before beginning the learning process, and they must be
indicated.

V. HYPERPARAMETERS IN DEEP LEARNING

A. Learning Rate

While training neural networks, a hyperparameter that has
a positive value ranging between 0.0 and 1.0 is utilized [5].
The parameter is known as the learning rate and can be
configured. Learning rates help in taking control of the
adaptation of the model to a given problem. The smaller the
learning rate the more the epochs because the changes made to
the weights will be small. Large learning rates attract few
epochs due to high speed. When the learning rate is too high,
model convergence is very fast while on the other hand when
the learning rate is too small, the process might be stuck at
some point. It is therefore important to carefully select the
learning rate to get correct results. This, therefore, makes the
learning rate the most important parameter when it comes to
neural networks.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

739 | P a g e
www.ijacsa.thesai.org

B. The Number of Layers that are Hidden

The topology or architecture of a network is controlled by
the actual number of layers and the nodes that each hidden
layer contains. During network configuration, the values of the
parameters must be specified. Systematic experimentation is
considered the most accurate way of configuring parameters
for various modeling problems. It is only through running
various experiments that the number of hidden layers required,
can be determined.

C. Momentum

This is a technique utilized during the backpropagation
stage to track preceding directions and store them as
embedded processed data. This helps the model to learn and
embed the direction of the previous weights and proceed
towards the same direction in the next propagation.

D. Activation Function

The decision as to whether neuron activation should be
done or not is done by the activation function. The action is
completed through the calculation of weighted sum and bias
addition. Non-linearity is introduced to the neuron output by
activation functions. For good results, it is advisable to use
ReLu activation for layers that are hidden and then use a
sigmoid activation function in the final layer.

E. Mini-batch Size

While using a very large dataset, it is challenging to feed a
neural network with all of it. Therefore, it is a good practice to
subdivide data into smaller sizes or group them into batches.
This helps because each time the algorithm trains itself, a
batch of the same size will be trained. If the batch sizes are too
big, however, it may result in a model that is overgeneralized
and data won’t fit well.

F. Epochs

Epochs represent the number of times the dataset will be
trained by the used algorithm during training. The number
varies with data or task one is facing and there is no
predefined number of epochs in any neural network. The idea
is to introduce a condition that stops the epochs when the error
is near zero or just starts with a lower number of epochs.

G. Dropout

Dropout allows the removal of some nodes in cases where
the neural network is very heavy and cannot train well. The
action is performed during the training stage and helps remove
redundancies that may occur due to congestion.

VI. PROPOSED WORK METHODOLOGY

In deep learning there are generally two basic parameters;
hyper-parameters and machine learnable parameters (MLP).
While training a particular dataset in any model, algorithms
used in that model can estimate MLP on their own. On the
other hand, Hyperparameters are assigned by data scientists or
engineers in form of values. These values help in tuning the
model and control how algorithms can learn. Learning rate is
denoted by ‘α’. In this work, the learning rate used is known
as adaptive learning rate whereby the increase or decrease in
learning rate is based on the gradient value of cost function

(CF). Equation 7 below was used in the calculation of learning
rates.

∝𝑛=
∝0

√𝑠𝑛
 (7)

where, the initial learning rate is denoted by 0 while the
momentum factor (MF) is denoted by𝑠𝑛 . The number of
epochs is denoted by n. MF was calculated using Equation 8
below:

𝑠𝑛 = [𝛾𝑠𝑛−1 + (1- 𝛾)
𝜕𝐶𝐹

𝜕𝛽
]n (8)

where, 𝛾 is the hyperparameter and 𝑠𝑛 is exponentially
weighted gradient average. Here values of all the gradients
were considered including those from previous epochs. The
major contribution of this work is to demonstrate the effect of
learning rates in the classification accuracy of a CNN. This
has been achieved through the performance of the experiments
using three learning rates with various class sizes. This work
also assesses the accuracy of the original CNN model when
different plant species are used with different learning rates.
The learning rates that have been used in the experiments are
0.001, 0.0001, and 0.00001, respectively.

A. The Data

This work has used two sets of data. One set comprised of
images from the PlantVillage dataset while the other dataset
comprised of images from the Nepal database. The algorithm
used for this work is routing by agreement with a convolution
of 256 filters, a kernel size of 9, and a ReLU activation
function [23]. The model has 32 channels and a kernel size of
9 with a vector dimension of 16. It contains a decoder network
with 3 dense layers (512; 1024; shape). Images from the
PlantVillage database were resized for use in this research.
The routing by agreement algorithm has been used by Hinton
et al. [22] for lung cancer screening. Mobiny and Van Nguyen
[24] used the algorithm to detect movements in movies. In this
work, each capsule attempted to predict the output of the
parent capsules, and when the prediction conformed to the
actual output of the parent capsule, then there it was assumed
that there was an increase in the coupling coefficient between
the two capsules as outlined by Gogola et al. [25]. This work
has also tested the same dataset on a convolutional neural
networks (ConvNet) model and the results were recorded.

The general procedure for disease classification involved
several stages, such as image acquisition, data pre-processing,
and data classification. Thereafter, training and validation of
the dataset were performed using different learning rates in the
normal CNN model [22] for classifications. The overall
workflow diagram for the techniques adopted is presented in
Fig. 1.

B. Image Acquisition

This phase involved the acquisition of images from the PV
dataset while other images were from the Nepal database. The
images were initially collected under different conditions that
were either controlled, wild, or uncontrolled before being put
under laboratory conditions.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

740 | P a g e
www.ijacsa.thesai.org

Fig. 1. The General Flow Diagram.

C. Pre-processing

Pre-processing techniques that were used include resizing
and checking dimensionality. For this work, each image from
the dataset was checked to find out if they were of the same
squared shape. The images that were not of the squared shape
were cropped to get the center square part of the image for
good classification. All images were then resized to 28 x28
pixels. Image resizing was done using Photoshop where the
large images were reduced in size and unneeded pixel
information was discarded. In cases where the images were
too small, Photoshop was used to enlarge, create a pixel and
add new pixel information. Resizing was done to reduce the
number of parameters and increase the processing speed.

D. Training and Testing Data Sets

In regards to splitting, the entire dataset was divided into
two subsets one used to train the model and the other used to
test the model. The testing subset was used to make
predictions that were compared with the original one to check
the model accuracy. The major objective of splitting was to be
able to evaluate the model based on new data; data that had
not been used to train the model. In all the experiments, the
test set was 0.3 of the total number of images while the
training set was 0.7 of the total images used.

E. Experimental Results

The first six experiments were done using four disease
classes as shown in Table I. The total number of images that
were used for this experiment was 10295 and 30% of that was
used for testing while 70% was used for training. In the first
and second experiments, the learning rate that was used was
0.0001 and the accuracy observed on training was 99.9%
while that of testing was 99% in the Capsule neural network
(CNN) model. While the ConvNet model displayed 100% on
training and 98.75% on testing. The levels of accuracies and
losses have been represented by Fig. 2 and Fig. 3 for CNN, 4
and 5 for ConvNet.

TABLE I. THE CLASSES THAT WERE USED FOR THE FIRST, SECOND AND

THIRD EXPERIMENTS

Disease Plant No.of images

Esca Black Measles Grape 2573

healthy Grape 2370

Leaf blight Isariopsis Leaf Spot Grape 2450

Huanglongbing Citrus greening Orange 2902

Fig. 2. Training and Testing Accuracy for CNN using Learning Rate of

0.0001 with 4 Disease Classes.

Fig. 3. Training and Testing Loss for CNN using Learning Rate of 0.0001

with 4 Disease Classes.

Fig. 4. Training and Testing Accuracy for ConvNet using Learning rate of

0.0001 with 4 Disease Classes.

Fig. 5. Training and Testing Loss for ConvNet using Learning Rate of

0.0001 with 4 Disease Classes.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

741 | P a g e
www.ijacsa.thesai.org

In the third and fourth experiments, the highest accuracy
reached on training was 94% while the testing accuracy was
97.0% for the capsule neural network (CNN) while the
Convolutional neural network (ConvNet) had 97% accuracy
on testing and 99% accuracy on training. The learning rate for
this particular experiment was 0.00001. Fig. 6 and 7 show the
graphs for training and testing accuracy and loss for CNN
while Fig. 8 and 9 show training and testing accuracy and loss
for ConvNet.

Fig. 6. Training and Testing Accuracy for CNN using Learning Rate of

0.00001 with 4 Disease Classes.

Fig. 7. Training and Testing Loss for CNN using Learning Rate of 0.00001

with 4 Disease Classes.

Fig. 8. Training and Testing Accuracy for ConvNet using Learning rate of

0.00001 with 4 Disease Classes.

Fig. 9. Training and Testing Loss for ConvNet using Learning rate of

0.00001 with 4 Disease Classes.

The fifth and sixth experiment was performed using
10295, and 30% of that was used for testing. The highest
accuracy reached on training was 99.9% while the testing
accuracy was 81% for Capsule neural network (CNN). The
testing accuracy for convolutional neural network (ConvNet)
was 96.5 while that of training was 99.0%. The learning rate
for this particular experiment was 0.001. Fig. 10 shows the
graph for training and testing accuracy for CNN, while Fig. 11
shows training and testing loss for CNN. Fig. 12 and 13 show
training and testing accuracy and loss for ConvNet,
respectively.

Fig. 10. Training and Testing Accuracy for CNN using Learning Rate of

0.001 with 4 Disease Classes.

Fig. 11. Training and Testing Loss for CNN using Learning Rate of 0.001

with 4 Disease Classes.

Fig. 12. Training and Testing Accuracy for ConvNet using Learning Rate of

0.001 with 4 Disease Classes.

Fig. 13. Training and Testing Loss for ConvNet using Learning Rate of 0.001

with 4 Disease Classes.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

742 | P a g e
www.ijacsa.thesai.org

The next experiments were done using six classes as
shown in Table II. The total number of images that were used
for this experiment was 12265 and 30% of that was used for
testing. The learning rates that were used for the experiments
were 0.0001, 0.00001, and 0.001, respectively. In the seventh
and eighth experiments, the accuracy observed on training was
99.9% while that of testing was 99% for Capsule neural
network (CNN) while the training and testing accuracy for the
convolutional neural network (ConvNet) was 100% and
96.2%, respectively. The levels of accuracy and loss for CNN
have been represented in Fig. 14 and Fig. 15, respectively
while those of ConvNet have been represented in Fig. 16
and 17.

TABLE II. THE CLASSES THAT WERE USED FOR THE FOURTH, FIFTH AND

SIXTH EXPERIMENTS

Disease Plant No.of images

Esca Black Measles Grape 2573

healthy Grape 2370

Leaf blight Isariopsis Leaf Spot Grape 2450

Huanglongbing Citrus greening

Early_blight

Healthy

Orange

Tomato

Tomato

2902

1000

970

Fig. 14. Training and Testing Accuracy for CNN using Learning Rate of

0.0001 with 6 Disease Classes.

Fig. 15. Training and Testing Loss for CNN using Learning Rate of 0.0001

with 6 Disease Classes.

Fig. 16. Training and Testing Accuracy for ConvNet using Learning rate of

0.0001 with 6 Disease Classes.

Fig. 17. Training and Testing Loss for ConvNet using Learning Rate of

0.0001 with 6 Disease Classes.

In the ninth and tenth experiments, the learning rate used
was 0.001 and the highest accuracy reached on training was
99.1% while the testing accuracy was 97.5% while using
Convolutional Neural network (ConvNet). Training and
testing accuracies were 100% and 98% for Capsule Neural
Network (CNN) respectively. Fig. 18 shows the graph for
training and testing accuracy, while Fig. 19 shows training and
testing loss for ConvNet. Fig. 20 and 21 show training and
testing accuracies for CNN.

Fig. 18. Training and Testing Accuracy for ConvNet using Learning Rate of

0.001 with 6 Disease Classes.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

743 | P a g e
www.ijacsa.thesai.org

Fig. 19. Training and Testing Loss for ConvNet using Learning Rate of 0.001

with 6 Disease Classes.

Fig. 20. Training and Testing Accuracy for CNN using Learning Rate of

0.001 with 6 Disease Classes.

Fig. 21. Training and Testing Loss for CNN using Learning Rate of 0.001

with 6 Disease Classes.

In the eleventh and twelfth experiment, the learning rate
was 0.0001 and the highest accuracy reached on training was
100% while the testing accuracy was 98.84% for Capsule
Neural Network (CNN) while training and testing accuracies
for Convolutional Neural Network (ConvNet) were 99.9% and
80%, respectively. Fig. 22 shows the graph for training and
testing accuracy while Fig. 23 shows training and testing loss
for ConvNet while Fig. 24 and 25 shows training and testing
accuracies and losses for CNN.

Fig. 22. Training and Testing Accuracy for ConvNet using Learning Rate of

0.0001 with 8 Disease Classes.

Fig. 23. Training and Testing Loss for ConvNet using Learning Rate of

0.0001 with 8 Disease Classes.

Fig. 24. Training and testing accuracy for CNN using learning rate of 0.0001

with 8 disease classes

Fig. 25. Training and Testing Loss for CNN using Learning Rate of 0.0001

with 8 Disease Classes.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

744 | P a g e
www.ijacsa.thesai.org

The next experiments were done using 10 classes as shown
in Table III below. The total number of images that were used
for this experiment was 12751 and 30% of that was used for
testing. The learning rate that was used for the thirteenth and
fourteenth experiment was 0.0001 and the accuracy observed
on training was 99.9% while that of testing was 93% for
Capsule Neural Network (CNN). The level of accuracy and
loss for training and testing using Convolutional Neural
network (ConvNet) was 100% and 97.5%, respectively. The
levels of accuracies and losses for CNN have been represented
by Fig. 26 and Fig. 27 below while those of ConvNet have
been represented by Fig. 28 and 29, respectively.

TABLE III. THE CLASSES THAT WERE USED FOR THE SEVENTH, EIGHTH

AND NINTH EXPERIMENTS

Disease Plant No.of images

Healthy Coffee 145

Miner Coffee 400

Rust Coffee 943

phoma

Cercospora

Common_rust

Healthy

Cercospora_leaf_spot

Gray_leaf_spot

Healthy

Coffee

Coffee

Corn

Corn

Corn

Blueberry

Cherry

1000

870

2000

1270

1870

2276

1977

Fig. 26. Training and Testing Accuracy for CNN using Learning Rate of

0.0001 with 10 Disease Classes.

Fig. 27. Training and Testing Loss for CNN using Learning Rate of 0.0001

with 10 Disease Classes.

Fig. 28. Training and Testing Accuracy for ConvNet using Learning Rate of

0.0001 with 10 Disease Classes.

Fig. 29. Training and Testing loss for ConvNet using Learning Rate of 0.0001

with 10 Disease Classes.

In the fifteenth and sixteenth experiments, the highest
accuracy reached on training was 91% while the testing
accuracy was 91% for Capsule Neural Network (CNN), while
Convolutional Neural Network (ConvNet) showed 97.75% for
testing and 100% for training. The learning rate (LR) for this
particular experiment was 0.00001. Fig. 30 and 31 show the
graphs for training and testing accuracy and loss using CNN.
Fig. 32 and 33 shows training and testing accuracy and loss
observed from ConvNet.

In the seventeenth and eighteenth experiments, the highest
accuracy reached on training was 99.9% while the testing
accuracy was 81% while using Capsule Neural Network
(CNN). On using Convolutional Neural Network (ConvNet)
the testing accuracy was 97.75% while that of training was
100%. The learning rate for this particular experiment was
0.001. Fig. 34 shows the graph for training and testing
accuracy while Fig. 35 shows training and testing loss for
CNN while Fig. 36 and 37 show training and testing
accuracies and losses for ConvNet.

Fig. 30. Training and Testing Accuracy for CNN using Learning Rate of

0.00001 with 10 Disease Classes.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

745 | P a g e
www.ijacsa.thesai.org

Fig. 31. Training and Testing Loss for CNN using Learning Rate of 0.00001

with 10 Disease Classes.

Fig. 32. Training and Testing Accuracy for ConvNet using Learning Rate of

0.00001 with 10 Disease Classes.

Fig. 33. Training and Testing Loss for ConvNet using Learning Rate of

0.00001 with 10 Disease Classes.

Fig. 34. Training and Testing Accuracy for CNN using Learning Rate of

0.001 with 10 Disease Classes.

Fig. 35. Training and Testing Loss for CNN using Learning Rate of 0.001

with 10 Disease Classes.

Fig. 36. Training and Testing Accuracy for ConvNet using Learning Rate of

0.001 with 10 Disease Classes.

Fig. 37. Training and Testing Loss for ConvNet using Learning Rate of 0.001

with 10 Disease Classes.

A total of 21121 images and 30% of that were used for
testing for the next experiments. Table IV shows the classes
that were used for the experiments. In the nineteenth and
twentieth experiments, the highest accuracy reached on
training was 99.9% while the testing accuracy was 97.4%
while using Capsule Neural Network (CNN). On using
Convolutional Neural Network (ConvNet) testing accuracy
observed was 98.04% while that of testing was 100%. The
learning rate (LR) for this particular experiment was 0.0001.
Fig. 38 shows the graph for training and testing accuracy
while Fig. 39 shows training and testing loss for CNN. Fig. 40
and 41 show training and testing accuracies and losses for
ConNet.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

746 | P a g e
www.ijacsa.thesai.org

TABLE IV. THE CLASSES THAT WERE USED FOR THE TENTH, ELEVENTH

AND TWELFTH EXPERIMENTS

Disease Plant Number of images

Healthy Coffee 145

Miner Coffee 400

Rust Coffee 943

phoma

Cercospora

Common_rust

Healthy

Cercospora_leaf_spot Gray_leaf_spot

Healthy

Healthy

Black_rot

Esca_(Black_Measles)

Healthy

Leaf_blight_(Isariopsis_Leaf_Spot)

Haunglongbing_(Citrus_greening)

Healthy

Coffee

Coffee

Corn

Corn

Corn

Blueberry

Cherry

Grape

Grape

Grape

Grape

Orange

Soybean

1000

870

2000

1270

1870

2276

1977

1000

2573

2370

977

800

650

Fig. 38. Training and Testing Accuracy for CNN using Learning Rate of

0.0001 with 16 Disease Classes.

Fig. 39. Training and Testing Loss for CNN using Learning Rate of 0.0001

with 16 Disease Classes.

Fig. 40. Training and Testing Accuracy for ConvNet using Learning Rate of

0.0001 with 16 Disease Classes.

Fig. 41. Training and Testing Loss for ConvNet using Learning Rate of

0.0001 with 16 Disease Classes.

In 21st and 22nd experiments, the highest accuracy
reached on training was 100% while the testing accuracy was
97.3% for Capsule Neural Network (CNN). The training and
testing accuracies for Convolutional Neural Network
(ConvNet) were 100% and 98.04%, respectively. The learning
rate for this particular experiment was 0.00001. Fig. 42 shows
the graph for training and testing accuracy while Fig. 43
shows training and testing loss for CNN while Fig. 44 and 45
show training and testing accuracies and losses for ConvNet.

Fig. 42. Training and Testing Accuracy for CNN using Learning Rate of

0.00001 with 16 Disease Classes.

Fig. 43. Training and Testing loss using Learning Rate of 0.00001 with 16

Disease Classes.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

747 | P a g e
www.ijacsa.thesai.org

Fig. 44. Training and Testing Accuracy for ConvNet using Learning Rate of

0.00001 with 16 Disease Classes.

Fig. 45. Training and Testing Loss for ConvNet using Learning Rate of

0.00001 with 16 Disease Classes.

The total number of images that were used for the 23rd
and 24th experiment was 15220 and 30% of that was used for
testing. The highest accuracy reached on training was 99.9%
while the testing accuracy was 84.5% for Capsule Neural
Networks (CNN). The testing accuracy reached for
Convolutional Neural Network (ConvNet) was 98.40% while
that of training was 100%. The learning rate for this particular
experiment was 0.001. Fig. 46 shows the graph for training
and testing accuracy while Fig. 47 shows training and testing
loss. Fig. 48 and 49 show training and testing accuracies and
losses for ConvNet.

Fig. 46. Training and Testing Accuracy for CNN using Learning Rate of

0.001 with 16 Disease Classes.

Fig. 47. Training and Testing Loss for CNN using Learning Rate of 0.001

with 16 Disease Classes.

Fig. 48. Training and Testing Accuracy for ConvNet using Learning Rate of

0.001 with 16 Disease Classes.

Fig. 49. Training and Testing Loss for ConvNet using Learning Rate of 0.001

with 16 Disease Classes.

From Table V, the highest accuracy of 0.99 was observed
on recognition when the learning rate of 0.0001. On the other
hand, the lowest accuracy of 0.81 was observed on recognition
when the learning rate was 0.001. It was also noted that when
images from other databases were added to those from
PlantVillage, accuracy dropped from 0.99 to 0.97; hence it
was concluded that CNN works best with PlantVillage
datasets when it comes to disease detection. The best accuracy
in testing while using ConvNet was 98.8%. It was however
noted that there was a loss of data due to pooling which may
have led to lower accuracies in both testing and training.
There was also overfitting which shows that ConvNets are
affected by dataset size, unlike the CNN which was not
affected by dataset size at all. It was also noted that when
images from other databases were added to those from
PlantVillage, accuracy dropped from 0.99 to 0.97; hence it
was concluded that CNN works best with PlantVillage
datasets when it comes to disease detection.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

748 | P a g e
www.ijacsa.thesai.org

TABLE V. RESULTS ANALYSIS FOR BOTH TRAINING AND TESTING IN CNN AND CONVNET

Dataset Size Learning Rate Convolutional Neural Network(ConvNet) Capsule Neural Network(CNN)

 Training accuracy (%) Testing accuracy (%) Training accuracy (%) Testing accuracy (%)

10295 0.001 99 96.5 99 81

 0.0001 100 98 99.9 99

 0.00001 99 96.5 94 97.0

12265 0.001 99.9 80 100 98.84

 0.0001 100 96.2 99.9 99

 0.00001 99.1 97.5 100 98

12751 0.001 100 97.75 99 81

 0.0001 100 97.5 99 93

 0.00001 100 97.8 91 91

21121 0.001 100 98.4 99.9 84.5

 0.0001 100 98.0 99 97.4

 0.00001 100 98.04 99.9 97.3

The values chosen for learning rates can speed up the
training processes of neural networks [40]. The author in [42]
studied the effect of fine-tuning the learning rate together with
the batch size and proposed the adjustment of learning rates
relative to the batch size. This work used large and small batch
size datasets of 21121and 10295 plant images. The author in
[44] characterized the functions of learning rates on training
and testing accuracies of neural network models. With this is
the critical hyperparameter of the gradient descent learning
rate [45]. Neural networks, according to several studies, do not
learn when very large learning rates are used [46, 47, 48, and
49]. These studies further state that the use of very small
learning rates leads to slow optimization and poor accuracy
results. This study found that the model was able to learn with
learning rates of 0.00001, 0.0001, and 0.001. However, the
learning time for the 0.0001 learning was slower compared to
the 0.001 learning rate. In support of this, [50] notes that very
high learning rates need constant training that may end up
consuming more time than is necessary and fail to achieve the
expected accuracy. On the other hand, very low learning rates
result in gradient decline, as well as lead to an increase in the
number of reiterations [52].

From Table V, it was also observed that the training rate
was relatively low when the learning rate was at 0.00001
while the training rate was high when the learning rate was
either 0.001 or 0.0001. To strike a balance, the learning rate of
0.0001 for both training and testing was able to give a perfect
fit.

VII. DISCUSSION

This section was used to examine the importance and
performance of learning rates in neural networks’ training for
optimum test accuracies. Studies such as [40, 41, 42, 43], have
recognized the influence of learning rates in achieving high

accuracies. Neural networks’ training processes are usually
affected by learning rates. When the training is done many
times, the learning rate can be affected and the system may
fail to generate high accuracies as expected. The author in [40]
established the triangle cyclic learning rates that included
TRI2, TRI, and TRIEXP. However, this method does not
require the use of specific learning rates but periodically
varies the learning rate at certain intervals. Our study on the
other hand used specific learning rates of 0.00001, 0.0001 and
0.001.

The findings by [11] match our results regarding the
relationship between learning rates and dataset sizes. The
author in [11] proposed the use of smaller dataset sizes.
However, our results do not agree with [12], who note that the
use of larger learning rates, results in an increased accuracy
result for the neural network. This is because from our results
smaller learning rate of 0.0001 had the highest accuracies
ranging between 93.7% and 99%, unlike the larger learning
rate of 0.001 that had learning rates ranging from 80% and
84.5%. Similarly, [51] performed simulations where learning
rates of 0.001 and 0.01 resulted in the best accuracy
percentages. Smaller learning rates produced higher accuracy
values and more time taken for the test training. Conversely,
larger learning rates result in reduced accuracy percentages
and a fast training process. Concerning larger dataset size, our
findings agree with [12] that the higher the size, the better the
neural performance. This work proposes the use of large
dataset sizes. This is supported by [12] on the relationship
between learning rates and batch sizes. This work highlights
that larger dataset sizes require higher learning rates. The
reason being that a larger dataset size of 21121 had the highest
accuracy of 84.5% for the larger learning rate of 0.001. The
author in [10] recommends a default batch size value of 32.
The author in [53] was able to achieve the highest accuracy
values using a batch size of 16. Other studies used ten classes

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

749 | P a g e
www.ijacsa.thesai.org

of image datasets to achieve the best performance [54, 55, and
56]. This work used the batch size of 10 and CNN algorithm
and the best performance (99% and 97.4%) was achieved for a
dataset of 12,265 and 9899 images (11 classes and 4 classes,
respectively) using the smaller learning rate of 0.0001. Larger
learning rates have also been used by [58], who used a
learning rate of 0.4 and achieved a 75% accuracy. The author
in [58] used two learning rates of 0001 and 0.01 to achieve the
best performances and observed that the lower learning rate
gave a higher accuracy as compared to its higher counterpart.
These learning rate values have been supported by [59] whose
study also produced the highest accuracy from the use of
correct input parameters. The study concludes that CNN
works best with a learning rate of 0.0001 when all other things
are kept constant. Another observation according to this work
was that other databases do not work well with CNN just like
the PalntVillage datasets [57]. The introduction of coffee from
a different database lowered the accuracy levels from 99% to
97%.

VIII. CONCLUSION

In conclusion, this work was able to observe that a large
learning rate tended to move in the “correct” direction, which
led to overshooting or surface error that could have interfered
with the accuracy hence made the training process consume
more time. This could be because of the constant “unlearning”
and overshooting problems that require backtracking. Under
normal circumstances, the failure to backtrack can result in
failed fluctuations and poor accuracy percentages [20]. In this
work, it was observed that small learning rates prevented
instabilities and overcorrections, and allowed for a smooth
path over the error landscape to reach a minimum. A lower
learning rate further resulted in a smoother path and therefore,
to significantly improve the testing accuracy, one can reduce
the learning rate.

From research done by [9], there are no predefined
learning rates but should be between 0 and 1.0 so there is a
need to balance and there is no better way to do that other than
to test several learning rates and observe their performances.
This work adopts the use of online training instead of batch
training. This is because batch training needs more time
compared to online training with no corresponding
improvement inaccuracy [5].

 Nonetheless, there is a limit to the times one can decrease
the learning rate. To avoid wasting time at such points, one
should avoid repeating the same steps while taking the same
path that results in the same minimum. Learning rate affects
the testing and training accuracies of CNN and therefore
researchers have to explore different learning rates before
settling on one. When the learning rate was high at 0.001, the
recognition rate was low at 84% and the model experienced a
lot of losses. But when the learning rate was relatively low at
0.0001, recognition rates were high at 99% and minimal loss
was observed. For CNN, to show good results, at both training
and recognition, this work suggests the use of a 0.0001
learning rate. There is a need to further investigate the effect
of batch sizes on test accuracies using adjusted learning rates
ranging between 0 and 1.

REFERENCES

[1] Bengio, Yoshua. "Practical recommendations for gradient-based training

of deep architectures." In Neural networks: Tricks of the trade, pp. 437-
478. Springer, Berlin, Heidelberg, 2012.

[2] Goodfellow, Ian, Yoshua Bengio, Aaron Courville, and Yoshua Bengio.

Deep learning. Vol. 1, no. 2. Cambridge: MIT Press, 2016.

[3] Schaul, Tom, Sixin Zhang, and Yann LeCun. "No more pesky learning
rates." In International Conference on Machine Learning, pp. 343-351.

PMLR, 2013.

[4] Zeiler, Matthew D. "Adadelta: an adaptive learning rate method." arXiv
preprint arXiv:1212.5701 (2012).

[5] Bergstra, James, and Yoshua Bengio. "Random search for hyper-
parameter optimization." Journal of machine learning research 13, no. 2

(2012).

[6] Li, Hao, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein.
"Visualizing the loss landscape of neural nets." arXiv preprint

arXiv:1712.09913 (2017).

[7] Andrychowicz, Marcin, Misha Denil, Sergio Gomez, Matthew W.
Hoffman, David Pfau, Tom Schaul, Brendan Shillingford, and Nando

De Freitas. "Learning to learn by gradient descent by gradient descent."
arXiv preprint arXiv:1606.04474 (2016).

[8] Baydin, Atilim Gunes, Robert Cornish, David Martinez Rubio, Mark

Schmidt, and Frank Wood. "Online learning rate adaptation with
hypergradient descent." arXiv preprint arXiv:1703.04782 (2017).

[9] Z. Xu, A. M. Dai, J. Kemp, L. Metz, and M. Sun. (2019). “Learning an

Adaptive Learning Rate Schedule”. 33rd Conference on Neural
Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

[10] I. Goodfellow, Y. Bengio, and A. Courville. “ Deep Learning”. The MIT

Press, 2016.

[11] Masters, Dominic, and Carlo Lucchi. "Revisiting small batch training

for deep neural networks." arXiv preprint arXiv:1804.07612 (2018).

[12] Radiuk, Pavlo M. "Impact of training set batch size on the performance
of convolutional neural networks for diverse datasets." Information

Technology and Management Science 20, no. 1 (2017): 20-24.

[13] Daniel, Christian, Jonathan Taylor, and Sebastian Nowozin. "Learning
step size controllers for robust neural network training." In Proceedings

of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1. 2016.

[14] Duchi, John, Elad Hazan, and Yoram Singer. "Adaptive subgradient
methods for online learning and stochastic optimization." Journal of

machine learning research 12, no. 7 (2011).

[15] Kingman, D. P., and J. Ba. "Adam: A Method for Stochastic
Optimization. Conference paper." In 3rd International Conference for

Learning Representations. 2015.

[16] Schmidhuber, Jürgen. "Deep learning in neural networks: An overview."
Neural networks 61 (2015): 85-117.

[17] Leung, Henry, and Simon Haykin. "The complex backpropagation
algorithm." IEEE Transactions on signal processing 39, no. 9 (1991):

2101-2104.

[18] Sangati, Federico, and Stefania Costantini. "International Journal of
Innovative Technology and Exploring Engineering (IJITEE)."

[19] Ruder, Sebastian. "An overview of gradient descent optimization

algorithms." arXiv preprint arXiv:1609.04747 (2016).

[20] Darken, Christian, Joseph Chang, and John Moody. "Learning rate
schedules for faster stochastic gradient search." In Neural networks for

signal processing, vol. 2. 1992.

[21] Sabour, Sara, Nicholas Frosst, and Geoffrey E. Hinton. "Dynamic
routing between capsules." arXiv preprint arXiv:1710.09829 (2017).

[22] Hinton, Geoffrey E., Sara Sabour, and Nicholas Frosst. "Matrix capsules

with EM routing." In International conference on learning
representations. 2018.

[23] Dou, Zi-Yi, Zhaopeng Tu, Xing Wang, Longyue Wang, Shuming Shi,
and Tong Zhang. "Dynamic layer aggregation for neural machine

translation with routing-by-agreement." In Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, no. 01, pp. 86-93. 2019.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

750 | P a g e
www.ijacsa.thesai.org

[24] Mobiny, Aryan, and Hien Van Nguyen. "Fast capsnet for lung cancer

screening." In International Conference on Medical Image Computing
and Computer-Assisted Intervention, pp. 741-749. Springer, Cham,

2018.

[25] Gogola, Ewa, Alexandra A. Duarte, Julian R. de Ruiter, Wouter W.
Wiegant, Jonas A. Schmid, Roebi de Bruijn, Dominic I. James et al.

"Selective loss of PARG restores PARylation and counteracts PARP
inhibitor-mediated synthetic lethality." Cancer cell 33, no. 6 (2018):

1078-1093.

[26] Bache, Kevin, Dennis DeCoste, and Padhraic Smyth. "Hot swapping for
online adaptation of optimization hyperparameters." arXiv preprint

arXiv:1412.6599 (2014).

[27] Chen, Yie-Ruey, Jing-Wen Chen, Shun-Chieh Hsieh, and Po-Ning Ni.
"The application of remote sensing technology to the interpretation of

land use for rainfall-induced landslides based on genetic algorithms and
artificial neural networks." IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing 2, no. 2 (2009): 87-95.

[28] Ariyadi, Rachmad, Mauridi Hery Purnomo, Nana Ramadijanti, and
Bima Sena Bayu Dewantara. "Pengenalan Rasa Lapar Melalui Suara

Tangis Bayi Umur 0-9 Bulan Dengan Menggunakan Neural Network
(Sub Judul: Penapisan Dengan Transformasi Wavelet Kontinyu)." eepis

final project (2010).

[29] Satti, Vijay, Anshul Satya, and Shanu Sharma. "An automatic leaf

recognition system for plant identification using machine vision
technology." International journal of engineering science and technology

5, no. 4 (2013): 874.

[30] Brahimi, Mohammed, Kamel Boukhalfa, and Abdelouahab Moussaoui.
"Deep learning for tomato diseases: classification and symptoms

visualization." Applied Artificial Intelligence 31, no. 4 (2017): 299-315.

[31] Llorca, Charmaine, May Elsbeth Yares, and Christian Maderazo.
"Image-based pest and disease recognition of tomato plants using a

convolutional neural network." In Proceedings of international
conference technological challenges for better world. 2018.

[32] Ferentinos, Konstantinos P. "Deep learning models for plant disease

detection and diagnosis." Computers and Electronics in Agriculture 145
(2018): 311-318.

[33] Mohanty, S. P., and D. P. Hughes. "Salathé Marcel (2016). Using deep

learning for image-based plant disease detection." Frontiers in Plant
Science 7: 1419.

[34] Kaur, Sukhvir, Shreelekha Pandey, and Shivani Goel. "Plants disease

identification and classification through leaf images: A survey."
Archives of Computational Methods in Engineering 26, no. 2 (2019):

507-530.

[35] Chaki, Jyotismita, and Ranjan Parekh. "Plant leaf recognition using

shape based features and neural network classifiers." International
Journal of Advanced Computer Science and Applications 2, no. 10

(2011).

[36] Sladojevic, Srdjan, Marko Arsenovic, Andras Anderla, Dubravko
Culibrk, and Darko Stefanovic. "Deep neural networks based

recognition of plant diseases by leaf image classification."
Computational intelligence and neuroscience 2016 (2016).

[37] Lowe, Amy, Nicola Harrison, and Andrew P. French. "Hyperspectral

image analysis techniques for the detection and classification of the
early onset of plant disease and stress." Plant methods 13, no. 1 (2017):

1-12.

[38] Kamilaris, Andreas, and Francesc X. Prenafeta-Boldú. "Deep learning in
agriculture: A survey." Computers and electronics in agriculture 147

(2018): 70-90.

[39] Barbedo, Jayme GA. "Factors influencing the use of deep learning for
plant disease recognition." Biosystems engineering 172 (2018): 84-91.

[40] Smith, Leslie N., and Nicholay Topin. "Super-convergence: Very fast

training of neural networks using large learning rates." In Artificial
Intelligence and Machine Learning for Multi-Domain Operations

Applications, vol. 11006, p. 1100612. International Society for Optics
and Photonics, 2019.

[41] Smith, Leslie N. "Cyclical learning rates for training neural networks."
In 2017 IEEE winter conference on applications of computer vision

(WACV), pp. 464-472. IEEE, 2017.

[42] Goyal, Priya, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz

Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming
He. "Accurate, large minibatch sgd: Training imagenet in 1 hour." arXiv

preprint arXiv:1706.02677 (2017).

[43] Zulkifli, Hafidz. "Understanding learning rates and how it improves
performance in deep learning." Towards Data Science 21 (2018): 23.

[44] Bache, Kevin, Dennis DeCoste, and Padhraic Smyth. "Hot swapping for

online adaptation of optimization hyperparameters." arXiv preprint
arXiv:1412.6599 (2014).

[45] Theodoridis, Sergios. "Machine Learning: A Bayesian and Optimization

Perspective. NET Developers Series." (2015).

[46] Jastrzębski, Stanisław, Zachary Kenton, Devansh Arpit, Nicolas Ballas,
Asja Fischer, Yoshua Bengio, and Amos Storkey. "Three factors

influencing minima in sgd." arXiv preprint arXiv:1711.04623 (2017).

[47] Kurita, Keita, Paul Michel, and Graham Neubig. "Weight poisoning

attacks on pre-trained models." arXiv preprint arXiv:2004.06660 (2020).

[48] Blier, Léonard, Pierre Wolinski, and Yann Ollivier. "Learning with
random learning rates." In Joint European Conference on Machine

Learning and Knowledge Discovery in Databases, pp. 449-464.
Springer, Cham, 2019.

[49] Surmenok, Pavel. "Estimating an optimal learning rate for a deep neural

network." Towards Data Science (2017).

[50] Pal, Dipan K., and Marios Savvides. "Non-parametric transformation
networks." arXiv preprint arXiv:1801.04520 (2018).

[51] Wilson, D. Randall, and Tony R. Martinez. "The need for small learning

rates on large problems." In IJCNN'01. International Joint Conference
on Neural Networks. Proceedings (Cat. No. 01CH37222), vol. 1, pp.

115-119. IEEE, 2001.

[52] Ariyadi, Rachmad, Mauridi Hery Purnomo, Nana Ramadijanti, and
Bima Sena Bayu Dewantara. "Pengenalan Rasa Lapar Melalui Suara

Tangis Bayi Umur 0-9 Bulan Dengan Menggunakan Neural Network
(Sub Judul: Penapisan Dengan Transformasi Wavelet Kontinyu)." eepis

final project (2010).

[53] Kandel, Ibrahem, and Mauro Castelli. "The effect of batch size on the

generalizability of the convolutional neural networks on a
histopathology dataset." ICT express 6, no. 4 (2020): 312-315.

[54] Sabour, Sara, Nicholas Frosst, and Geoffrey E. Hinton. "Dynamic

routing between capsules." arXiv preprint arXiv:1710.09829 (2017).

[55] Xi, Edgar, Selina Bing, and Yang Jin. "Capsule network performance on
complex data." arXiv preprint arXiv:1712.03480 (2017).

[56] Pal, Dipan K., and Marios Savvides. "Non-parametric transformation

networks." arXiv preprint arXiv:1801.04520 (2018).

[57] Chen, Yie-Ruey, Jing-Wen Chen, Shun-Chieh Hsieh, and Po-Ning Ni.
"The application of remote sensing technology to the interpretation of

land use for rainfall-induced landslides based on genetic algorithms and
artificial neural networks." IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing 2, no. 2 (2009): 87-95.

[58] Arif, Nursida, and Projo Danoedoro. "An Analyze of A
Backpropagation Neural Network in The Identification of Critical Land

Based on ALOS Imagery." In Proc. Int. Conf. on 34th Asian Conference
on Remote Sensing, vol. 1, pp. 589-593. 2013.

[59] Amara, Jihen, Bassem Bouaziz, and Alsayed Algergawy. "A deep
learning-based approach for banana leaf diseases classification."

Datenbanksysteme für Business, Technologie und Web (BTW 2017)-
Workshopband (2017).

[60] Clement, Damien, Monna Arvinen-Barrow, and Tera Fetty.

"Psychosocial responses during different phases of sport-injury
rehabilitation: a qualitative study." Journal of athletic training 50, no. 1

(2015): 95-104.

[61] Atole, Ronnel R., and Daechul Park. "A multiclass deep convolutional
neural network classifier for detection of common rice plant anomalies."

International Journal of Advanced Computer Science and Applications
9, no. 1 (2018): 67-70.

[62] Cui, Di, Qin Zhang, Minzan Li, Glen L. Hartman, and Youfu Zhao.

"Image processing methods for quantitatively detecting soybean rust
from multispectral images." Biosystems engineering 107, no. 3 (2010):

186-193.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

751 | P a g e
www.ijacsa.thesai.org

[63] Barbedo, Jayme GA. "Factors influencing the use of deep learning for

plant disease recognition." Biosystems engineering 172 (2018): 84-91.

[64] Fuentes, Alvaro, Sook Yoon, Sang Cheol Kim, and Dong Sun Park. "A
robust deep-learning-based detector for real-time tomato plant diseases

and pests recognition." Sensors 17, no. 9 (2017): 2022.

[65] Mohanty, Sharada P., David P. Hughes, and Marcel Salathé. "Using
deep learning for image-based plant disease detection." Frontiers in

plant science 7 (2016): 1419.

[66] Vogelmeier, Claus F., Gerard J. Criner, Fernando J. Martinez, Antonio
Anzueto, Peter J. Barnes, Jean Bourbeau, Bartolome R. Celli et al.

"Global strategy for the diagnosis, management, and prevention of

chronic obstructive lung disease 2017 report. GOLD executive

summary." American journal of respiratory and critical care medicine
195, no. 5 (2017): 557-582.

[67] Ferentinos, Konstantinos P. "Deep learning models for plant disease

detection and diagnosis." Computers and Electronics in Agriculture 145
(2018): 311-318.

[68] Syamsuri, Burhanudin, and Gede Putra Kusuma. "Plant Disease

Classification using Lite Pretrained Deep Convolutional Neural Network
on Android Mobile Device." International Journal of Innovative

Technology and Exploring Engineering 9 (2019).

