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Abstract—Learning rates in gradient descent algorithms have 

significant effects especially on the accuracy of a Capsule Neural 

Network (CNN). Choosing an appropriate learning rate is still an 

issue to date. Many developers still have a problem in selecting a 

learning rate for CNN leading to low accuracies in classification. 

This gap motivated this study to assess the effect of learning rate 

on the accuracy of a developed (CNN). There are no predefined 

learning rates in CNN and therefore it is hard for researchers to 

know what learning rate will give good results. This work, 

therefore, focused on assessing the effect of learning rate on the 

accuracy of a CNN by using different learning rates and 

observing the best performance. The contribution of this work is 

to give an appropriate learning rate for CNNs to improve 

accuracy during classification. This work has assessed the effect 

of different learning rates and came up with the most 

appropriate learning rate for CNN plant leaf disease 

classification. Part of the images used in this work was from the 

PlantVillage dataset while others were from the Nepal database. 

The images were pre-processed then subjected to the original 

CNN model for classification. When the learning rate was 0.0001, 

the best performance was 99.4% on testing and 100% on 

training. When the learning rate was 0.00001, the highest 

performance was 97% on testing and 99.9% on training. The 

lowest performance observed was 81% accuracy on testing and 

99% on training when the learning rate was 0.001. This work 

observed that CNN was able to achieve the highest accuracy with 

a learning rate of 0.0001. The best Convolutional Neural 

Network accuracy observed was 98% on testing and 100% on 
training when the learning rate was 0.0001. 
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I. INTRODUCTION 

Deep learning has been used over time for plant leaf 
disease detection and classification. Some of the researchers 
who have used deep learning include 
[29,30,31,32,33,34,35,36,37,38,39]. Capsule neural networks 
(CNN) are a regularly used neural network structure that has 
significant effects on deep learning, particularly in computer 
vision studies. CNN's have attained superhuman levels in 
different computer task categories, for example, object 
detection, classification, incidence segmentation, semantic 
segmentation, and parsing. The learning rate is viewed as the 
absolute hyper-parameter to tune and remarkably influence 
model training with gradient descent algorithms [1, 2]. Studies 
have come up with several learning rate techniques including 
inverse square root decay, linear decay, exponential decay, 
and cosine decay [3, 4]. These learning rates have varying 
procedures that are based on an optimization problem. One of 

the limitations involves the selection of a suitable learning rate 
for a given application. 

Practically, researchers have adopted a trial-and-error 
method for various learning rates alongside diverse hyper-
parameters, which is a very tedious process [5]. This paper 
utilizes a regulator that adapts three learning rate schedules of 
0.001, 0.0001, and 0.00001. Existing learning rate schedules 
adopt predefined parametric learning rate changes, which are 
fixed regardless of prevailing training dynamics. The 
predefined parametric learning rate changes have a limited 
flexibility and may not be improved for the training dynamics 
of various high dimensional and non-convex advancement 
issues [6]. The context for this work provides adaptive meta-
learned learning rates that dynamically adjust to current 
training. The process of training a neural network using an 
algorithm, for example, the error back-propagation [1, 2, 3, 4] 
is normally time-consuming, especially when working on 
complex problems. These types of algorithms naturally have a 
learning rate parameter that controls the extents by which the 
weights can change based on an observed error that was noted 
on the training set. 

Learning rate schedules can dramatically affect the 
accuracy of the results. Therefore, the process of choosing 
learning rates using training algorithms can be problematic 
especially when there is no guiding value for specific tasks. 
Various algorithms have been used to tune the learning rate 
parameters [6, 7, and 8], yet such strategies generally have 
failed to concentrate on refining the resulting accuracy. Most 
of the experts in neural networks use the highest learning rates 
that allow merging. However, when learning rates are set too 
high, it causes unwanted divergent behavior in the loss 
function. Hence when the highest learning rates are applied to 
complex and large problems, there is a negative effect on the 
training process and accuracy. On the other hand, when the 
learning rate is set too low, the training progress will be very 
slow because very small updates are made to the weights of 
the work [9]. So there is a need to balance and there is no 
better way to do that other than to test several learning rates 
and observe their performances. This work adopts the use of 
online training instead of batch training. This is because batch 
training needs more time compared to online training with no 
corresponding improvement inaccuracy [5]. This paper aims 
to investigate the effect of learning rate on the accuracy of 
CNN's as applied in plant disease detection. Since Tensor flow 
recommends a learning rate of 0.001, this works started by 
using that learning rate and observed a low percentage of 84% 
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accuracy in testing. It is from there that this work focused on 
reducing the learning rate further to 0.0001 and then to 
0.00001. A total of 24 experiments were conducted for plant 
leaf disease classification using the three learning rates and 
0.0001 gave the best classification results of 99.4% accuracy 
on testing and 100% on training. 

II. RELATED WORK 

Hyperparameters such as batch size need adjusting before 
capsule neural network training for image classification. 
Studies on the effect of batch size and learning rates on neural 
network accuracy have been conducted. The studies have tried 
to determine the more efficient network performances related 
to learning rates and the magnitude of batches. 

According to [10] the default number batch size should be 
32. The author noted that a large batch size and high learning 
rates speed up the process of network performance but reduce 
the number of updates needed to reach convergence. Batch 
sizes do not affect the performance of the neural network but 
influence the convergence time. Masters and Luschi [11] 
studied the effect of batch sizes on ImageNet, CIFAR10, and 
CIFAR100 datasets for two architectures of ResNet and 
AlexNet. The batch sizes ranged between 21 and 211. The 
results showed that the best accuracies were achieved from 
batch sizes that ranged from 2 and 32. The study concluded 
that large batch sizes are not efficient compared to small batch 
sizes. Radiuk [12] also studied the effect of batch size on 
network performance for the classification of images using 
CIFAR-10 and MNIST datasets for the LeNet architecture. 
The study used two learning rates of 0.0001 (CIFAR-10) and 
0.001 (MNIST). The results showed that the highest accuracy 
was obtained from the largest batch size with a lower learning 
rate of 0.0001. This showed that batch size and learning rates 
affect the performance of neural networks. 

Several studies have proposed improved update schedules 
for gradient descent algorithms [7, 8, 9, 13, 14, and 15]. In [7], 
the need for direct learning of the gradient descent updates 
through the use of the long short-term memory (LSTM) 
network was proposed. Hyper gradient tends to assume the 
learning rate derivative and subsequently updates it according 
to its gradient [8]. Z. XU [9] proposed a reinforcement 
learning-based framework that can auto-learn an adaptive 
learning rate schedule according to the existing information 
from historical training. This method puts into consideration 
the whole training history while presenting a comprehensive 
interpretation. Daniel [13] proposed the application of 
reinforcement learning (RL) with a focus on learning rate 
adaptation. This paper uses the learning rates as the action and 
the reward indicator include validation loss. Duchi et al. [14] 
used learning rate adaptation based on the weight and the total 
number of gradient squares and obtained some results. 
Kingma [15] used an exponentially decayed mean of historical 
gradients. 

Neural Networks are models with progressive layers of 
neurons that have been in existence for quite a long time. They 
can be trained in both Supervised and Unsupervised [16] 
ways. In supervised training, a backpropagation algorithm was 
created in the 1970s [17]. This algorithm utilizes a gradient 
descent approach to compute the learning system of the neural 

network. A gradient descent approach is commonly used in 
neural networks to update parameters (𝜆 =
{1𝑒−1, 1𝑒−2, 1𝑒−3} ). Such training is conducted to get to an 
optimum point where the loss is at its minimum and the 
expected and predicted values are almost similar [18]. 
Training a large neural network is a challenging task. 
Sebastian [19] established the Stochastic Gradient Descent 
(SGD) algorithm to accomplish an improved performance 
during the training time using variable learning rates. Such 
processes have been described as Adaptive Learning Rates/ 
Rate Scheduling [26]. Larger learning rates have also been 
used by [27], who used a learning rate of 0.4 and achieved 
75% accuracy. The results show a low accuracy rate which 
most likely was caused by the high learning rate. Purnomo 
[28] used 0.01 and observed that this learning rate led to low 
accuracies 

III. CONVOLUTIONAL NEURAL NETWORKS (CONVNETS) 

When convolutional neural networks in Fig. 1 are applied 
to disease detection, models demonstrate great performance. 
The discussion below shows some great materials showing the 
use of convolutional neural networks in the detection and 
classification of plant diseases. 

The authors in [59] used LeNet architecture [Le89] 
architecture with CNN for the classification of banana leaf 
disease. The images used were from Plantvillage which were 
from homogeneous backgrounds. The results obtained, 
according to the authors were good. The challenges 
experienced were that in some splits, the model took more 
time to converge, and practically, all the images cannot be 
from uniform backgrounds. 

Researchers in [60] used the digital color image analysis 
discrimination method: The results were questionable because 
of the existence of other leaves or weeds. Segmentation is not 
fit to be used in the field because it will fail to effectively 
extract the leaf from its background hence inaccurate results. 
Alex Net and transfer learning were used by [61] to detect 
common rice plant anomalies using CNN. During the 
classification task, the approach never considered the specific 
class of diseases that may affect rice plants. The authors also 
used transfer learning on AlexNet which is a small and old 
CNN architecture. Authors in [62] used segmentation method 
in detecting soybean rust from multispectral images using 
CNN. The results were questionable because of the existence 
of other leaves or weeds. Segmentation is not fit to be used in 
the field because it will fail to effectively extract the leaf from 
its background hence inaccurate results. Author in [63] used 
segmentation with CNN and there was a lot of reliability on 
hand-crafted features such as color histograms, texture 
features, shape features, and SIFT that require expensive work 
and demand expert knowledge. The author in [64] used Gabor 
filter for feature extraction and Artificial Neural Network 
classifier for classification in real plant tomato leaf disease 
recognition. They used images from homogeneous 
backgrounds alone which practically is not true because there 
must be other plants and weeds in farms. The author in [65] 
used images from plant village alone and AlexNet architecture 
for plant disease detection and they lacked the accuracy of 
result because plant village dataset images have homogeneous 
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backgrounds while under normal conditions, images from the 
field have heterogeneous backgrounds. 

The authors in [65] utilized the convolutional neural 
network to detect disease in plant leaves. In the research, 
54306 images and 14 different species of plants were used 
which later represented 26 diseases together with healthy 
leaves. Furthermore, the authors used segmented, greyscale, 
and colored images for model training and the accuracy was 
99.35%. However, when tested on another dataset, the 
accuracy fell to 31.4%. Real-Time captured images have 
heterogonous backgrounds while the images from the plant 
village dataset have a homogenous background. The author in 
[66] used convolutional neural networks to recognize 13 
plants of different species and detect disease in their leaves. 
All the images utilized by the author were secondary images 
fetched from the internet. Here, 15 classes were considered 
and one class for the healthy leaves the accuracy was 
measured at 88%. However, it was discovered that most of the 
images from the website were mislabeled and differed greatly 
from those taken from the field which later introduced a 
mismatch error. The researcher in [67] used 87,848 images 
with 25 different plant species and included healthy plants. 
AlexNet, Over feat, GoogleNet and AlexNet were utilized in 
the identification of plant leaf diseases from images captured 
from the field. The aim was to be able to match the plant and 
disease combination when a leaf image was provided. The 
datasets here contained images from the laboratory and field 
as well. The accuracy was found to be 99.53%. CNN gives 
some results, but they have two major challenges, Pooling 
layers, and Translation Invariance. 

In research done by [68], CNN was used in detection and 
classification. The technique used was transfer learning while 
the coffee disease was classified as coffee leaf rust. The study 
used an android profiler in determining resource consumption. 
The researchers obtained some results. However, they 
observed loss of data through Pooling. 

IV. CAPSULE NEURAL NETWORKS (CNNS) 

Capsules comprise neuron clusters that have vector 
activities [21]. The activities are a representation of different 
pose parameters while their vector lengths show the existence 
of specific neuron elements. Most CNNs problems are 
generally associated with the pooling layers. For capsule 
networks, issues of pooling layers are corrected using the 
“routing by agreement” procedure [22]. The procedure 
involves adding neuron outputs to parent capsules in a 
subsequent layer, though, they typically have different 
coupling coefficients. The output of the parent capsules is 
based on the prediction of an individual capsule. If a 
prediction is consistent with the actual output of the parent 
capsule, then there is an increase in the coupling coefficient 
between the two capsule layers. Using capsule I that has ui as 
its output, the prediction of an individual capsule i for parent 
capsule j is as shown in equation 1. 

Û𝑗|𝑖 = 𝑊𝑖𝑗 𝑢𝑖               (1) 

where, Û𝑗|𝑖 is considered as the prediction vector of the jth 

capsule output from a different layer resulting from capsule i, 

and where 𝑊𝑖𝑗  is used as a weighting matrix after being 

learned using the backward pass. The SoftMax equation can 
after that be computed from the coupling coefficients 𝑐𝑖𝑗  as 

shown in equation 2. 

𝑐𝑖𝑗 =  
𝑒𝑥𝑝 (𝑏𝑖𝑗)

∑ 𝑒𝑥𝑝(𝑏𝑖𝑘)𝑘
              (2) 

Where the log probability is represented by 𝑏𝑖𝑗, which is 

programmed initially as 0 before initiating the “routing by 
agreement” process. The computation for adding a vector 
neuron to the parent capsule j is shown in equation 3. 

𝑠𝑗 =  ∑ 𝑐𝑖𝑗 Û𝑗|𝑖 𝑖               (3) 

Subsequently, there is a need to use a non-linear equation 
(4) to prevent capsule vectors from producing more than one 
output and creating the final output of an individual capsule. 

𝑣𝑗 =  
║𝑠𝑗║)²

1+║𝑠𝑗║² 

𝑠𝑗 

║𝑠𝑗║
             (4) 

where, 𝑣𝑗 is the output of capsule j, and 𝑠𝑗 is the input 

vector. The “routing by agreement” process allows for an 
updating of the log probabilities considering the agreement 

set between 𝑣𝑗  and Û𝑗|𝑖. When the two capsule vectors are in 

agreement, then they will produce a larger inner output. 
Equation (5) shows an agreement 𝑎𝑖𝑗  that is necessary for the 

updating of coupling coefficients and log probabilities. 

𝑎𝑖𝑗 = 𝑣𝑗 . Û𝑗|𝑖              (5) 

For equation 6, individual capsule k in the final layer is 
related to 𝑙k, which is a loss function. The function adds high 
loss values on individual capsules that have long output 
instantiation parameters when there is a missing entity. 

𝑙𝑘 = 𝑇𝑘 𝑚𝑎𝑥  (0, 𝑚+ − ║𝑣𝑘║)² + 𝜆(1 −
𝑇𝑘 ) 𝑚𝑎𝑥 (0, ║𝑣𝑘║ − 𝑚−)²   

             (6) 

When class k exists, 𝑇𝑘  is 1. Otherwise when class k is 
absent 𝑇𝑘  is 0. Hyperparameters 𝑚−, 𝜆 and 𝑚+ are used 
before beginning the learning process, and they must be 
indicated. 

V. HYPERPARAMETERS IN DEEP LEARNING 

A. Learning Rate 

While training neural networks, a hyperparameter that has 
a positive value ranging between 0.0 and 1.0 is utilized [5]. 
The parameter is known as the learning rate and can be 
configured. Learning rates help in taking control of the 
adaptation of the model to a given problem. The smaller the 
learning rate the more the epochs because the changes made to 
the weights will be small. Large learning rates attract few 
epochs due to high speed. When the learning rate is too high, 
model convergence is very fast while on the other hand when 
the learning rate is too small, the process might be stuck at 
some point. It is therefore important to carefully select the 
learning rate to get correct results. This, therefore, makes the 
learning rate the most important parameter when it comes to 
neural networks. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 8, 2021 

739 | P a g e  
www.ijacsa.thesai.org 

B. The Number of Layers that are Hidden 

The topology or architecture of a network is controlled by 
the actual number of layers and the nodes that each hidden 
layer contains. During network configuration, the values of the 
parameters must be specified. Systematic experimentation is 
considered the most accurate way of configuring parameters 
for various modeling problems. It is only through running 
various experiments that the number of hidden layers required, 
can be determined. 

C. Momentum 

This is a technique utilized during the backpropagation 
stage to track preceding directions and store them as 
embedded processed data. This helps the model to learn and 
embed the direction of the previous weights and proceed 
towards the same direction in the next propagation. 

D. Activation Function 

The decision as to whether neuron activation should be 
done or not is done by the activation function. The action is 
completed through the calculation of weighted sum and bias 
addition. Non-linearity is introduced to the neuron output by 
activation functions. For good results, it is advisable to use 
ReLu activation for layers that are hidden and then use a 
sigmoid activation function in the final layer. 

E. Mini-batch Size 

While using a very large dataset, it is challenging to feed a 
neural network with all of it. Therefore, it is a good practice to 
subdivide data into smaller sizes or group them into batches. 
This helps because each time the algorithm trains itself, a 
batch of the same size will be trained. If the batch sizes are too 
big, however, it may result in a model that is overgeneralized 
and data won’t fit well. 

F. Epochs 

Epochs represent the number of times the dataset will be 
trained by the used algorithm during training. The number 
varies with data or task one is facing and there is no 
predefined number of epochs in any neural network. The idea 
is to introduce a condition that stops the epochs when the error 
is near zero or just starts with a lower number of epochs. 

G. Dropout 

Dropout allows the removal of some nodes in cases where 
the neural network is very heavy and cannot train well. The 
action is performed during the training stage and helps remove 
redundancies that may occur due to congestion. 

VI. PROPOSED WORK METHODOLOGY 

In deep learning there are generally two basic parameters; 
hyper-parameters and machine learnable parameters (MLP). 
While training a particular dataset in any model, algorithms 
used in that model can estimate MLP on their own. On the 
other hand, Hyperparameters are assigned by data scientists or 
engineers in form of values. These values help in tuning the 
model and control how algorithms can learn. Learning rate is 
denoted by ‘α’. In this work, the learning rate used is known 
as adaptive learning rate whereby the increase or decrease in 
learning rate is based on the gradient value of cost function 

(CF). Equation 7 below was used in the calculation of learning 
rates. 

∝𝑛=
∝0

√𝑠𝑛
               (7) 

where, the initial learning rate is denoted by 0 while the 
momentum factor (MF) is denoted by𝑠𝑛 . The number of 
epochs is denoted by n. MF was calculated using Equation 8 
below: 

𝑠𝑛  = [𝛾𝑠𝑛−1 + (1- 𝛾) 
𝜕𝐶𝐹

𝜕𝛽
 ]n             (8) 

where, 𝛾 is the hyperparameter and 𝑠𝑛  is exponentially 
weighted gradient average. Here values of all the gradients 
were considered including those from previous epochs. The 
major contribution of this work is to demonstrate the effect of 
learning rates in the classification accuracy of a CNN. This 
has been achieved through the performance of the experiments 
using three learning rates with various class sizes. This work 
also assesses the accuracy of the original CNN model when 
different plant species are used with different learning rates. 
The learning rates that have been used in the experiments are 
0.001, 0.0001, and 0.00001, respectively. 

A. The Data 

This work has used two sets of data. One set comprised of 
images from the PlantVillage dataset while the other dataset 
comprised of images from the Nepal database. The algorithm 
used for this work is routing by agreement with a convolution 
of 256 filters, a kernel size of 9, and a ReLU activation 
function [23]. The model has 32 channels and a kernel size of 
9 with a vector dimension of 16. It contains a decoder network 
with 3 dense layers (512; 1024; shape). Images from the 
PlantVillage database were resized for use in this research. 
The routing by agreement algorithm has been used by Hinton 
et al. [22] for lung cancer screening. Mobiny and Van Nguyen 
[24] used the algorithm to detect movements in movies. In this 
work, each capsule attempted to predict the output of the 
parent capsules, and when the prediction conformed to the 
actual output of the parent capsule, then there it was assumed 
that there was an increase in the coupling coefficient between 
the two capsules as outlined by Gogola et al. [25]. This work 
has also tested the same dataset on a convolutional neural 
networks (ConvNet) model and the results were recorded. 

The general procedure for disease classification involved 
several stages, such as image acquisition, data pre-processing, 
and data classification. Thereafter, training and validation of 
the dataset were performed using different learning rates in the 
normal CNN model [22] for classifications. The overall 
workflow diagram for the techniques adopted is presented in 
Fig. 1. 

B. Image Acquisition 

This phase involved the acquisition of images from the PV 
dataset while other images were from the Nepal database. The 
images were initially collected under different conditions that 
were either controlled, wild, or uncontrolled before being put 
under laboratory conditions. 
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Fig. 1. The General Flow Diagram. 

C. Pre-processing 

Pre-processing techniques that were used include resizing 
and checking dimensionality. For this work, each image from 
the dataset was checked to find out if they were of the same 
squared shape. The images that were not of the squared shape 
were cropped to get the center square part of the image for 
good classification. All images were then resized to 28 x28 
pixels. Image resizing was done using Photoshop where the 
large images were reduced in size and unneeded pixel 
information was discarded. In cases where the images were 
too small, Photoshop was used to enlarge, create a pixel and 
add new pixel information. Resizing was done to reduce the 
number of parameters and increase the processing speed. 

D. Training and Testing Data Sets 

In regards to splitting, the entire dataset was divided into 
two subsets one used to train the model and the other used to 
test the model. The testing subset was used to make 
predictions that were compared with the original one to check 
the model accuracy. The major objective of splitting was to be 
able to evaluate the model based on new data; data that had 
not been used to train the model. In all the experiments, the 
test set was 0.3 of the total number of images while the 
training set was 0.7 of the total images used. 

E. Experimental Results 

The first six experiments were done using four disease 
classes as shown in Table I. The total number of images that 
were used for this experiment was 10295 and 30% of that was 
used for testing while 70% was used for training. In the first 
and second experiments, the learning rate that was used was 
0.0001 and the accuracy observed on training was 99.9% 
while that of testing was 99% in the Capsule neural network 
(CNN) model. While the ConvNet model displayed 100% on 
training and 98.75% on testing. The levels of accuracies and 
losses have been represented by Fig. 2 and Fig. 3 for CNN, 4 
and 5 for ConvNet. 

TABLE I. THE CLASSES THAT WERE USED FOR THE FIRST, SECOND AND 

THIRD EXPERIMENTS 

Disease Plant  No.of images 

Esca Black Measles Grape 2573 

healthy Grape 2370 

Leaf blight Isariopsis Leaf Spot Grape 2450 

Huanglongbing Citrus greening Orange 2902 

 

Fig. 2. Training and Testing Accuracy for CNN using Learning Rate of 

0.0001 with 4 Disease Classes. 

 

Fig. 3. Training and Testing Loss for CNN using Learning Rate of 0.0001 

with 4 Disease Classes. 

 

Fig. 4. Training and Testing Accuracy for ConvNet using Learning rate of 

0.0001 with 4 Disease Classes. 

 

Fig. 5. Training and Testing Loss for ConvNet using Learning Rate of 

0.0001 with 4 Disease Classes. 
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In the third and fourth experiments, the highest accuracy 
reached on training was 94% while the testing accuracy was 
97.0% for the capsule neural network (CNN) while the 
Convolutional neural network (ConvNet) had 97% accuracy 
on testing and 99% accuracy on training. The learning rate for 
this particular experiment was 0.00001. Fig. 6 and 7 show the 
graphs for training and testing accuracy and loss for CNN 
while Fig. 8 and 9 show training and testing accuracy and loss 
for ConvNet. 

 

Fig. 6. Training and Testing Accuracy for CNN using Learning Rate of 

0.00001 with 4 Disease Classes. 

 

Fig. 7. Training and Testing Loss for CNN using Learning Rate of 0.00001 

with 4 Disease Classes. 

 

Fig. 8. Training and Testing Accuracy for ConvNet using Learning rate of 

0.00001 with 4 Disease Classes. 

 

Fig. 9. Training and Testing Loss for ConvNet using Learning rate of 

0.00001 with 4 Disease Classes. 

The fifth and sixth experiment was performed using 
10295, and 30% of that was used for testing. The highest 
accuracy reached on training was 99.9% while the testing 
accuracy was 81% for Capsule neural network (CNN). The 
testing accuracy for convolutional neural network (ConvNet) 
was 96.5 while that of training was 99.0%. The learning rate 
for this particular experiment was 0.001. Fig. 10 shows the 
graph for training and testing accuracy for CNN, while Fig. 11 
shows training and testing loss for CNN. Fig. 12 and 13 show 
training and testing accuracy and loss for ConvNet, 
respectively. 

 

Fig. 10. Training and Testing Accuracy for CNN using Learning Rate of 

0.001 with 4 Disease Classes. 

 

Fig. 11. Training and Testing Loss for CNN using Learning Rate of 0.001 

with 4 Disease Classes. 

 

Fig. 12. Training and Testing Accuracy for ConvNet using Learning Rate of 

0.001 with 4 Disease Classes. 

 

Fig. 13. Training and Testing Loss for ConvNet using Learning Rate of 0.001 

with 4 Disease Classes. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 8, 2021 

742 | P a g e  
www.ijacsa.thesai.org 

The next experiments were done using six classes as 
shown in Table II. The total number of images that were used 
for this experiment was 12265 and 30% of that was used for 
testing. The learning rates that were used for the experiments 
were 0.0001, 0.00001, and 0.001, respectively. In the seventh 
and eighth experiments, the accuracy observed on training was 
99.9% while that of testing was 99% for Capsule neural 
network (CNN) while the training and testing accuracy for the 
convolutional neural network (ConvNet) was 100% and 
96.2%, respectively. The levels of accuracy and loss for CNN 
have been represented in Fig. 14 and Fig. 15, respectively 
while those of ConvNet have been represented in Fig. 16 
and 17. 

TABLE II. THE CLASSES THAT WERE USED FOR THE FOURTH, FIFTH AND 

SIXTH EXPERIMENTS 

Disease Plant  No.of images 

Esca Black Measles Grape 2573 

healthy Grape 2370 

Leaf blight Isariopsis Leaf Spot Grape 2450 

Huanglongbing Citrus greening 

Early_blight 

Healthy 

Orange 

Tomato 

Tomato 

2902 

1000 

970 

 

Fig. 14. Training and Testing Accuracy for CNN using Learning Rate of 

0.0001 with 6 Disease Classes. 

 

Fig. 15. Training and Testing Loss for CNN using Learning Rate of 0.0001 

with 6 Disease Classes. 

 

Fig. 16. Training and Testing Accuracy for ConvNet using Learning rate of 

0.0001 with 6 Disease Classes. 

 

Fig. 17. Training and Testing Loss for ConvNet using Learning Rate of 

0.0001 with 6 Disease Classes. 

In the ninth and tenth experiments, the learning rate used 
was 0.001 and the highest accuracy reached on training was 
99.1% while the testing accuracy was 97.5% while using 
Convolutional Neural network (ConvNet). Training and 
testing accuracies were 100% and 98% for Capsule Neural 
Network (CNN) respectively. Fig. 18 shows the graph for 
training and testing accuracy, while Fig. 19 shows training and 
testing loss for ConvNet. Fig. 20 and 21 show training and 
testing accuracies for CNN. 

 

Fig. 18. Training and Testing Accuracy for ConvNet using Learning Rate of 

0.001 with 6 Disease Classes. 
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Fig. 19. Training and Testing Loss for ConvNet using Learning Rate of 0.001 

with 6 Disease Classes. 

 

Fig. 20. Training and Testing Accuracy for CNN using Learning Rate of 

0.001 with 6 Disease Classes. 

 

Fig. 21. Training and Testing Loss for CNN using Learning Rate of 0.001 

with 6 Disease Classes. 

In the eleventh and twelfth experiment, the learning rate 
was 0.0001 and the highest accuracy reached on training was 
100% while the testing accuracy was 98.84% for Capsule 
Neural Network (CNN) while training and testing accuracies 
for Convolutional Neural Network (ConvNet) were 99.9% and 
80%, respectively. Fig. 22 shows the graph for training and 
testing accuracy while Fig. 23 shows training and testing loss 
for ConvNet while Fig. 24 and 25 shows training and testing 
accuracies and losses for CNN. 

 

Fig. 22. Training and Testing Accuracy for ConvNet using Learning Rate of 

0.0001 with 8 Disease Classes. 

 

Fig. 23. Training and Testing Loss for ConvNet using Learning Rate of 

0.0001 with 8 Disease Classes. 

 

Fig. 24. Training and testing accuracy for CNN using learning rate of 0.0001 

with 8 disease classes 

 

Fig. 25. Training and Testing Loss for CNN using Learning Rate of 0.0001 

with 8 Disease Classes. 
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The next experiments were done using 10 classes as shown 
in Table III below. The total number of images that were used 
for this experiment was 12751 and 30% of that was used for 
testing. The learning rate that was used for the thirteenth and 
fourteenth experiment was 0.0001 and the accuracy observed 
on training was 99.9% while that of testing was 93% for 
Capsule Neural Network (CNN). The level of accuracy and 
loss for training and testing using Convolutional Neural 
network (ConvNet) was 100% and 97.5%, respectively. The 
levels of accuracies and losses for CNN have been represented 
by Fig. 26 and Fig. 27 below while those of ConvNet have 
been represented by Fig. 28 and 29, respectively. 

TABLE III. THE CLASSES THAT WERE USED FOR THE SEVENTH, EIGHTH 

AND NINTH EXPERIMENTS 

Disease Plant  No.of images 

Healthy Coffee 145 

Miner Coffee 400 

Rust Coffee 943 

phoma  

Cercospora  

Common_rust 

Healthy 

Cercospora_leaf_spot 

Gray_leaf_spot 

Healthy 

Coffee  

Coffee  

Corn 

Corn 

Corn 

Blueberry 

Cherry 

1000 

870 

2000 

1270 

1870 

2276 

1977 

 

Fig. 26. Training and Testing Accuracy for CNN using Learning Rate of 

0.0001 with 10 Disease Classes. 

 

Fig. 27. Training and Testing Loss for CNN using Learning Rate of 0.0001 

with 10 Disease Classes. 

 

Fig. 28. Training and Testing Accuracy for ConvNet using Learning Rate of 

0.0001 with 10 Disease Classes. 

 

Fig. 29. Training and Testing loss for ConvNet using Learning Rate of 0.0001 

with 10 Disease Classes. 

In the fifteenth and sixteenth experiments, the highest 
accuracy reached on training was 91% while the testing 
accuracy was 91% for Capsule Neural Network (CNN), while 
Convolutional Neural Network (ConvNet) showed 97.75% for 
testing and 100% for training. The learning rate (LR) for this 
particular experiment was 0.00001. Fig. 30 and 31 show the 
graphs for training and testing accuracy and loss using CNN. 
Fig. 32 and 33 shows training and testing accuracy and loss 
observed from ConvNet. 

In the seventeenth and eighteenth experiments, the highest 
accuracy reached on training was 99.9% while the testing 
accuracy was 81% while using Capsule Neural Network 
(CNN). On using Convolutional Neural Network (ConvNet) 
the testing accuracy was 97.75% while that of training was 
100%. The learning rate for this particular experiment was 
0.001. Fig. 34 shows the graph for training and testing 
accuracy while Fig. 35 shows training and testing loss for 
CNN while Fig. 36 and 37 show training and testing 
accuracies and losses for ConvNet. 

 

Fig. 30. Training and Testing Accuracy for CNN using Learning Rate of 

0.00001 with 10 Disease Classes. 
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Fig. 31. Training and Testing Loss for CNN using Learning Rate of 0.00001 

with 10 Disease Classes. 

 

Fig. 32. Training and Testing Accuracy for ConvNet using Learning Rate of 

0.00001 with 10 Disease Classes. 

 

Fig. 33. Training and Testing Loss for ConvNet using Learning Rate of 

0.00001 with 10 Disease Classes. 

 

Fig. 34. Training and Testing Accuracy for CNN using Learning Rate of 

0.001 with 10 Disease Classes. 

 

Fig. 35. Training and Testing Loss for CNN using Learning Rate of 0.001 

with 10 Disease Classes. 

 

Fig. 36. Training and Testing Accuracy for ConvNet using Learning Rate of 

0.001 with 10 Disease Classes. 

 

Fig. 37. Training and Testing Loss for ConvNet using Learning Rate of 0.001 

with 10 Disease Classes. 

A total of 21121 images and 30% of that were used for 
testing for the next experiments. Table IV shows the classes 
that were used for the experiments. In the nineteenth and 
twentieth experiments, the highest accuracy reached on 
training was 99.9% while the testing accuracy was 97.4% 
while using Capsule Neural Network (CNN). On using 
Convolutional Neural Network (ConvNet) testing accuracy 
observed was 98.04% while that of testing was 100%. The 
learning rate (LR) for this particular experiment was 0.0001. 
Fig. 38 shows the graph for training and testing accuracy 
while Fig. 39 shows training and testing loss for CNN. Fig. 40 
and 41 show training and testing accuracies and losses for 
ConNet. 
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TABLE IV. THE CLASSES THAT WERE USED FOR THE TENTH, ELEVENTH 

AND TWELFTH EXPERIMENTS 

Disease Plant  Number of images 

Healthy Coffee 145 

Miner Coffee 400 

Rust Coffee 943 

phoma  

Cercospora  

Common_rust 

Healthy 

Cercospora_leaf_spot Gray_leaf_spot 

Healthy 

Healthy 

Black_rot 

Esca_(Black_Measles) 

Healthy 

Leaf_blight_(Isariopsis_Leaf_Spot) 

Haunglongbing_(Citrus_greening) 

Healthy 

Coffee  

Coffee  

Corn 

Corn 

Corn 

Blueberry 

Cherry 

Grape 

Grape 

Grape 

Grape 

Orange 

Soybean 

1000 

870 

2000 

1270 

1870 

2276 

1977 

1000 

2573 

2370 

977 

800 

650 

 

Fig. 38. Training and Testing Accuracy for CNN using Learning Rate of 

0.0001 with 16 Disease Classes. 

 

Fig. 39. Training and Testing Loss for CNN using Learning Rate of 0.0001 

with 16 Disease Classes. 

 

Fig. 40. Training and Testing Accuracy for ConvNet using Learning Rate of 

0.0001 with 16 Disease Classes. 

 

Fig. 41. Training and Testing Loss for ConvNet using Learning Rate of 

0.0001 with 16 Disease Classes. 

In 21st and 22nd experiments, the highest accuracy 
reached on training was 100% while the testing accuracy was 
97.3% for Capsule Neural Network (CNN). The training and 
testing accuracies for Convolutional Neural Network 
(ConvNet) were 100% and 98.04%, respectively. The learning 
rate for this particular experiment was 0.00001. Fig. 42 shows 
the graph for training and testing accuracy while Fig. 43 
shows training and testing loss for CNN while Fig. 44 and 45 
show training and testing accuracies and losses for ConvNet. 

 

Fig. 42. Training and Testing Accuracy for CNN using Learning Rate of 

0.00001 with 16 Disease Classes. 

 

Fig. 43. Training and Testing loss using Learning Rate of 0.00001 with 16 

Disease Classes. 
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Fig. 44. Training and Testing Accuracy for ConvNet using Learning Rate of 

0.00001 with 16 Disease Classes. 

 

Fig. 45. Training and Testing Loss for ConvNet using Learning Rate of 

0.00001 with 16 Disease Classes. 

The total number of images that were used for the 23rd 
and 24th experiment was 15220 and 30% of that was used for 
testing. The highest accuracy reached on training was 99.9% 
while the testing accuracy was 84.5% for Capsule Neural 
Networks (CNN). The testing accuracy reached for 
Convolutional Neural Network (ConvNet) was 98.40% while 
that of training was 100%. The learning rate for this particular 
experiment was 0.001. Fig. 46 shows the graph for training 
and testing accuracy while Fig. 47 shows training and testing 
loss. Fig. 48 and 49 show training and testing accuracies and 
losses for ConvNet. 

 

Fig. 46. Training and Testing Accuracy for CNN using Learning Rate of 

0.001 with 16 Disease Classes. 

 

Fig. 47. Training and Testing Loss for CNN using Learning Rate of 0.001 

with 16 Disease Classes. 

 

Fig. 48. Training and Testing Accuracy for ConvNet using Learning Rate of 

0.001 with 16 Disease Classes. 

 

Fig. 49. Training and Testing Loss for ConvNet using Learning Rate of 0.001 

with 16 Disease Classes. 

From Table V, the highest accuracy of 0.99 was observed 
on recognition when the learning rate of 0.0001. On the other 
hand, the lowest accuracy of 0.81 was observed on recognition 
when the learning rate was 0.001. It was also noted that when 
images from other databases were added to those from 
PlantVillage, accuracy dropped from 0.99 to 0.97; hence it 
was concluded that CNN works best with PlantVillage 
datasets when it comes to disease detection. The best accuracy 
in testing while using ConvNet was 98.8%. It was however 
noted that there was a loss of data due to pooling which may 
have led to lower accuracies in both testing and training. 
There was also overfitting which shows that ConvNets are 
affected by dataset size, unlike the CNN which was not 
affected by dataset size at all. It was also noted that when 
images from other databases were added to those from 
PlantVillage, accuracy dropped from 0.99 to 0.97; hence it 
was concluded that CNN works best with PlantVillage 
datasets when it comes to disease detection. 
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TABLE V. RESULTS ANALYSIS FOR BOTH TRAINING AND TESTING IN CNN AND CONVNET 

Dataset Size Learning Rate Convolutional Neural Network(ConvNet) Capsule Neural Network(CNN) 

  Training accuracy (%) Testing accuracy (%) Training accuracy (%) Testing accuracy (%) 

10295 0.001 99 96.5 99 81 

 0.0001 100 98 99.9 99 

 0.00001 99 96.5 94 97.0 

      

12265 0.001 99.9 80 100  98.84 

 0.0001 100 96.2 99.9 99 

 0.00001 99.1 97.5 100 98 

      

12751 0.001 100 97.75 99 81 

 0.0001 100 97.5 99 93 

 0.00001 100 97.8 91 91 

      

21121 0.001 100 98.4 99.9 84.5 

 0.0001 100 98.0 99 97.4 

 0.00001 100 98.04 99.9 97.3 

The values chosen for learning rates can speed up the 
training processes of neural networks [40]. The author in [42] 
studied the effect of fine-tuning the learning rate together with 
the batch size and proposed the adjustment of learning rates 
relative to the batch size. This work used large and small batch 
size datasets of 21121and 10295 plant images. The author in 
[44] characterized the functions of learning rates on training 
and testing accuracies of neural network models. With this is 
the critical hyperparameter of the gradient descent learning 
rate [45]. Neural networks, according to several studies, do not 
learn when very large learning rates are used [46, 47, 48, and 
49]. These studies further state that the use of very small 
learning rates leads to slow optimization and poor accuracy 
results. This study found that the model was able to learn with 
learning rates of 0.00001, 0.0001, and 0.001. However, the 
learning time for the 0.0001 learning was slower compared to 
the 0.001 learning rate. In support of this, [50] notes that very 
high learning rates need constant training that may end up 
consuming more time than is necessary and fail to achieve the 
expected accuracy. On the other hand, very low learning rates 
result in gradient decline, as well as lead to an increase in the 
number of reiterations [52]. 

From Table V, it was also observed that the training rate 
was relatively low when the learning rate was at 0.00001 
while the training rate was high when the learning rate was 
either 0.001 or 0.0001. To strike a balance, the learning rate of 
0.0001 for both training and testing was able to give a perfect 
fit. 

VII. DISCUSSION 

This section was used to examine the importance and 
performance of learning rates in neural networks’ training for 
optimum test accuracies. Studies such as [40, 41, 42, 43], have 
recognized the influence of learning rates in achieving high 

accuracies. Neural networks’ training processes are usually 
affected by learning rates. When the training is done many 
times, the learning rate can be affected and the system may 
fail to generate high accuracies as expected. The author in [40] 
established the triangle cyclic learning rates that included 
TRI2, TRI, and TRIEXP. However, this method does not 
require the use of specific learning rates but periodically 
varies the learning rate at certain intervals. Our study on the 
other hand used specific learning rates of 0.00001, 0.0001 and 
0.001. 

The findings by [11] match our results regarding the 
relationship between learning rates and dataset sizes. The 
author in [11] proposed the use of smaller dataset sizes. 
However, our results do not agree with [12], who note that the 
use of larger learning rates, results in an increased accuracy 
result for the neural network. This is because from our results 
smaller learning rate of 0.0001 had the highest accuracies 
ranging between 93.7% and 99%, unlike the larger learning 
rate of 0.001 that had learning rates ranging from 80% and 
84.5%. Similarly, [51] performed simulations where learning 
rates of 0.001 and 0.01 resulted in the best accuracy 
percentages. Smaller learning rates produced higher accuracy 
values and more time taken for the test training. Conversely, 
larger learning rates result in reduced accuracy percentages 
and a fast training process. Concerning larger dataset size, our 
findings agree with [12] that the higher the size, the better the 
neural performance. This work proposes the use of large 
dataset sizes. This is supported by [12] on the relationship 
between learning rates and batch sizes. This work highlights 
that larger dataset sizes require higher learning rates. The 
reason being that a larger dataset size of 21121 had the highest 
accuracy of 84.5% for the larger learning rate of 0.001. The 
author in [10] recommends a default batch size value of 32. 
The author in [53] was able to achieve the highest accuracy 
values using a batch size of 16. Other studies used ten classes 
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of image datasets to achieve the best performance [54, 55, and 
56]. This work used the batch size of 10 and CNN algorithm 
and the best performance (99% and 97.4%) was achieved for a 
dataset of 12,265 and 9899 images (11 classes and 4 classes, 
respectively) using the smaller learning rate of 0.0001. Larger 
learning rates have also been used by [58], who used a 
learning rate of 0.4 and achieved a 75% accuracy. The author 
in [58] used two learning rates of 0001 and 0.01 to achieve the 
best performances and observed that the lower learning rate 
gave a higher accuracy as compared to its higher counterpart. 
These learning rate values have been supported by [59] whose 
study also produced the highest accuracy from the use of 
correct input parameters. The study concludes that CNN 
works best with a learning rate of 0.0001 when all other things 
are kept constant. Another observation according to this work 
was that other databases do not work well with CNN just like 
the PalntVillage datasets [57]. The introduction of coffee from 
a different database lowered the accuracy levels from 99% to 
97%. 

VIII. CONCLUSION 

In conclusion, this work was able to observe that a large 
learning rate tended to move in the “correct” direction, which 
led to overshooting or surface error that could have interfered 
with the accuracy hence made the training process consume 
more time. This could be because of the constant “unlearning” 
and overshooting problems that require backtracking. Under 
normal circumstances, the failure to backtrack can result in 
failed fluctuations and poor accuracy percentages [20]. In this 
work, it was observed that small learning rates prevented 
instabilities and overcorrections, and allowed for a smooth 
path over the error landscape to reach a minimum. A lower 
learning rate further resulted in a smoother path and therefore, 
to significantly improve the testing accuracy, one can reduce 
the learning rate. 

From research done by [9], there are no predefined 
learning rates but should be between 0 and 1.0 so there is a 
need to balance and there is no better way to do that other than 
to test several learning rates and observe their performances. 
This work adopts the use of online training instead of batch 
training. This is because batch training needs more time 
compared to online training with no corresponding 
improvement inaccuracy [5]. 

 Nonetheless, there is a limit to the times one can decrease 
the learning rate. To avoid wasting time at such points, one 
should avoid repeating the same steps while taking the same 
path that results in the same minimum. Learning rate affects 
the testing and training accuracies of CNN and therefore 
researchers have to explore different learning rates before 
settling on one. When the learning rate was high at 0.001, the 
recognition rate was low at 84% and the model experienced a 
lot of losses. But when the learning rate was relatively low at 
0.0001, recognition rates were high at 99% and minimal loss 
was observed. For CNN, to show good results, at both training 
and recognition, this work suggests the use of a 0.0001 
learning rate. There is a need to further investigate the effect 
of batch sizes on test accuracies using adjusted learning rates 
ranging between 0 and 1. 
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