CHUKA

UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELORS OF EDUCATION SCIENCE /ARTS; BSc. MATHEMATICS; ECONOMICS AND STATISTICS; BACHELORS OF ARTS (MATHS-ECONS)

MATH 222: VECTOR ANALYSIS

STREAMS: AS ABOVE
TIME: 2 HOURS

DAY/DATE: FRIDAY 14/12/2018

```
8.30 P.M - 4.30 P.M.
```


INSTRUCTIONS:

- Answer question ONE and TWO other questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE: [30 MARKS]

a) Prove that if \vec{a} and \vec{b} are non-collinear vectors and $x_{1} \vec{a}+y_{1} \vec{b}=x_{2} \vec{a}+y_{2} \vec{b}$, then

$$
x_{1}=x_{2} \text { and } y_{1}=y_{2}
$$

Marks]

$$
\phi=x^{2} y+x z \quad 2 i-2 j+k
$$

b) Find the directional derivative of
in the direction of the vector at $(1,-2,2)$ Marks]
c) Calculate the area of the parallelogram of PQRS , where $\mathrm{P}(1,1), \mathrm{Q}(2,3), \mathrm{R}(5,4)$ and $\mathrm{S}(4,2)$.

$$
\int_{c} y d x+z d y+x d z
$$

d) Evaluate the line integral where c is the parametric curve

$$
x=t, y=t^{2}, x=t^{3} ; 0 \leq t \leq 1
$$

[4 Marks]
e) Determine the unit tangent vector at the point where $t=2$ on the curve

$$
\begin{equation*}
x=t^{2}+1, y=4 t-3, z=2 t^{2}-6 t \tag{3Marks}
\end{equation*}
$$

f) $\begin{aligned} & \phi=\ln |r| \\ & \operatorname{Given} \text { that } \quad \vec{r}=x \hat{i}+y \hat{j}+z \hat{k} \quad \text { and } \quad r=|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}} \\ & \operatorname{drad} \phi)\end{aligned}$. Find
[5 Marks]

$$
x=x(s) \quad y=y(s) \quad z=z(s)
$$

g) A curve C is defined by parametric equations , and where
s is the length of the curve C measured from a fixed point C . If ${ }^{r}$ is the position vector

$$
\begin{equation*}
\frac{\overrightarrow{d r}}{d s} \tag{4Marks}
\end{equation*}
$$

of any point on C, show that is a unit vector tangent to C.
h) State without proof the following theorems
i. Green's theorem in a plane
[2 Marks]
ii. Stoke's theorem

QUESTION TWO: [20 MARKS]

a) Find the equation for the plane perpendicular to the vector $\vec{A}=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and passing through the terminal point of the vector $B \quad i 2 \hat{i}-5 \hat{j}+3 \hat{k}$

$$
\operatorname{div}(\operatorname{curl}(\overrightarrow{(A)})=0
$$

b) Prove that

$$
\vec{r}=\cos w t \vec{i}+\sin w t \vec{j}
$$

c) A particle moves in space so that its position vector is given by where w is a constant. Show that ;
i. The velocity of the particle is perpendicular to
ii. The acceleration is directed towards the origin and has magnitude proportional to the distance from the origin

$$
\phi(x, y, z)=2 x^{3} y^{2} z^{4}
$$

d) Given calculate;
i. $\operatorname{Div}\left(\operatorname{grad}^{\phi}\right)$
ii. $\operatorname{Curl}(\operatorname{grad}())$

QUESTION THREE: [20 MARKS]

$$
\vec{F}=\left(y^{2} \cos x+z^{3}\right) i+(2 y \sin x-4) j+\left(3 x z^{2}+2\right) k
$$

a) Given the vector function
i. Show that a conservative force field
ii. Find the scalar potential

$$
\int_{c} \vec{F} \cdot \overrightarrow{d r} \quad(0,-1,1) \quad\left(\frac{\pi}{2},-1,2\right)
$$

iii. Evaluate where c is a straight line from
b) State athe Frenet-Serret formulas

$$
r(t)=\langle t, 3 \sin t, 3 \cos t\rangle
$$

c) Given the space curve , find:
i. The tangent vector
ii. The principal normal and curvature
iii. The unit binormal

$$
\int_{c} y^{3} d x-x^{3} d y
$$

a) Evaluate the line integral centered at the origin
where C is the positively oriented circle of radius 2
[10 Marks]

$$
\iint_{S} \operatorname{curl} \vec{F} \overrightarrow{d s} \quad \vec{F}=z^{2} i-3 x y j+x^{3} y^{3} k
$$

b) Use Stoke's theorem to evaluate $z=5-x^{2}-y^{2} \quad z=1$
of the surface above the plane. Assume S is oriented upwards

QUESTION FIVE: [20 MARKS]
a)_Find the volume of the parallelepiped with adjacent sides

$$
\vec{u}=2 \hat{i}+\hat{j}+3 \hat{k} \quad, \quad \vec{v}=-\hat{i}+3 \hat{j}+2 \hat{k} \quad, \quad \vec{w}=\hat{i}+\hat{j}-2 \hat{k}
$$

Marks]
b) If $\vec{A}=x^{2} y z \hat{i}-2 x z^{3} \hat{j}+x z^{2} \hat{k}$ and $\vec{B}=2 z \hat{i}+y \hat{j}-x^{2} \hat{k} \quad$, find $\begin{gathered}A \\ \left.\frac{\partial^{2}}{\partial_{x} \partial_{y}} \vec{i}\right)\end{gathered}$ at $(1,0,-2)$
[4 Marks]

$$
\vec{A}=4 x \hat{i}-2 y^{2} \hat{j}+z^{2} \hat{k}
$$

Verify divergence theorem for taken over the region bounded by the

$$
x^{2}+y^{2}=4 \quad 0 \leq z \leq 3
$$

cylinder
[12 Marks]

