CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION (SCIENCE, ARTS)

MATH 221: CALCULUS II
STREAMS:
TIME: 2 HOURS
DAY/DATE: THURSDAY 13/12/2018
8.30 A.M - 10.30 A.M

INSTRUCTIONS:
Answer Questions ONE (compulsory) and any other TWO Questions

QUESTION ONE (COMPULSORY) (30MARKS)

$$
\int_{2.1}^{3.6} f(x) d x
$$

a. Use Trapezoidal rule to approximate the value for the integral empirical data in the table below
(4 Marks)

x	2.1	2.4	2.7	3.0	3.3	3.6
$f(x)$	3.2	2.7	2.9	3.5	4.1	5.2

b. Evaluate the following integrals
(3,2,3,3,2Marks)

$$
\int\left(2 e^{x}+\frac{6}{x}+\ln 2\right) d x
$$

i.

$$
\int\left(x^{3}-2 x^{2}\right)\left(\frac{1}{x}-5\right) d x
$$

ii.

$$
\int \frac{2 x^{4}}{x^{5}+1} d x
$$

iii.
$\int x^{2} e^{5 x} d x$
iv.

$$
\int_{0}^{\pi} \operatorname{Sin} t d t
$$

V.
$a>1 \quad \int_{1}^{a} \frac{x^{3}-1}{x^{2}} d x=1$
c. If and , find the value of

$$
y=x+4, y=0 \text { and } x=2
$$

d. Find the area bound by the lines

$$
\int \operatorname{Tan} \theta d \theta=\ln |\operatorname{Sec} \theta|+C
$$

e. Show that
(3Marks)

QUESTION TWO (20MARKS)

a. Use partial fractions to evaluate the integral

$$
\int \frac{2 x+3}{x^{2}-9} d x
$$

a.
(4 Marks)

$$
y=x^{3}+x^{2}-3 x+4
$$

b. State Rolle's Theorem and verify it for the function in the interval $-1<x<2$
(8 Marks)
c. The velocity of a particle after the start of movement is given as
find the velocity and the distance of the particle 3 seconds after the start of the

$$
t=0 s=3 m
$$

movement given that when
(8Marks)

QUESTION THREE (20MARKS)

$$
f(x)=\sqrt{1+x^{3}}
$$

a. Consider the function

$$
f(x)=\sqrt{1+x^{3}}
$$

i. Tabulate to four decimal places the values of the function
for values x
of from 1 to 4 at an interval Of 0.5

$$
\begin{aligned}
& \int_{1}^{4} \sqrt{1+x^{3}} d x \\
& \quad \text { using the Simpson's rule with }
\end{aligned}
$$

ii. Approximate
(5 Marks)

$$
\int 16 x \operatorname{Sin}^{3}\left(2 x^{2}+1\right) \operatorname{Cos}\left(2 x^{2}+1\right) d x=\operatorname{Sin}^{4}\left(2 x^{2}+1\right)+C
$$

b. Use appropriate substitutions to show that
$y=-x^{2}+4 \quad y=x^{2}-2 x$
c. Find the area between the curves of the functions

$$
y=-x^{2}+4 \quad y=x^{2}-2 x
$$

Marks)

QUESTION FOUR (20MARKS)

$$
y=\frac{x^{3}}{3}
$$

a. Find the surface area of the solid generated by revolving the arc of the curve

$$
x=1 \quad x=2
$$

between and about the y-axis (8Marks)
b. Determine the volume of the solid generated by rotating the region bounded by $y=x^{3}, x=o$ and $y=8$
about the y-axis
(6Marks)
c. State the first fundamental theorem of integral Calculus and hence compute by the integration by parts method
(6 Marks)

$$
\int_{0.25 \pi}^{\pi} \operatorname{Sin}^{2} x d x
$$

QUESTION FIVE (20MARKS)

$$
y=3 x+12 \text { and } y=x^{2}+2 \quad x=-2 \text { and } x=5
$$

a. Consider the two functions between
i. Determine the point of intersection of the two curves

$$
x=-2 \text { and } x=5
$$

ii. Find the area enclosed by the curves between (5Marks)

$$
\int \frac{x-1}{2 x-1} d x
$$

b. Compute the integral

$$
\begin{equation*}
f(x)=\frac{4}{3} x^{3 / 2} \tag{2,6}
\end{equation*}
$$

c. Find the arc length of the function on (6Marks)
the given the interval

