CHUKA



UNIVERSITY

8.30 A.M. – 10.30 A.M.

**TIME: 2 HOURS** 

## UNIVERSITY EXAMINATIONS

## SECONDARY YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE MATHEMATICS

## MATH 205: ELEMENTS OF SET THEORY

# **STREAMS: BSC (MATHS)**

# DAY/DATE: FRIDAY 07/12/2018

# **INSTRUCTIONS:**

- Answer Question ONE and any other TWO Questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be **No** use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

# **QUESTION ONE (30 MARKS)**

a)\_For each of the following cases, determine whether it represents a function. If it is a function,

state whether it is injective

- i. To each of the 24 student in math 205, assign the gender
- ii. To each student in Chuka university, assign a registration number
- iii. To each student in first year, assign the semester course units
- **iv.** To each book written by a single author, assign the author
- v. To each positive number, assign its square root

$$A_n = \{n, n+2\}$$

b) Given the sets , where n is a positive integer evaluate

i.  $\bigcup_{n=3}^{10} A_n \cap A_n$  $\bigcup_{n=1}^{10} A_n \cap A_n$ ii. and  $\bigcup_n A_n \cap A_n$ ii.

c) Find the domain of the function

(4 marks)

(5 marks)

 $f: R \to R$ defined by  $f(x) = \frac{4}{\sqrt{x^2 - 4}}$ 

(2 marks)

| $A = \left\{ 11 + (-1)^n \frac{1}{n} \right\}$<br>d) Consider the set where n is a positive integer<br>i. Find the supremum and the infimum of A (2 marks)<br>ii. Find all the limit points of A (1 marks)<br>e) With an appropriate example, show that a bounded sequence is not necessarily convergent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| (.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| marks)<br>f) Consider the function $f: R \to R \qquad f(x) = x^2 + 1$ f) Consider the function $f: D \to R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| i. Find the largest set D such that is injective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| ii. Find the smallest set T such that $f: R \to T$ is onto (3 marks)<br>(3 marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| g) Let A and B be sets. Show that the product order on $A \times B$ defined by $a \le c$ if $a \le c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| $b \le d$ $A \times B$ (4 marks)andis a partial order on(3 marks)h)Prove that the set of integers is countable(3 marks)i)Prove that if the limit of a sequence exists, then it is unique(3 marks)j)State the Axiom of choice(1 marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| QUESTION TWO (20 MARKS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| a) Distinguish the following<br>i. A restriction and an inclusion map<br>ii. A countable and uncountable set<br>iii. A linearly ordered set and a poset<br>(3 marks<br>(3 marks)<br>(3 marks |  |  |
| b) Consider the function $f: R \to R$ defined by $f(x) = \frac{ x }{x} : x \neq 0$ and $f(0) = 0$ .<br>$\frac{R}{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| i. The quotient sets (2 marks $f(P)$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| ii. The image (2 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| c) Given a sequence intervals $I_1, I_2, \dots, I_1 \supseteq I_2 \supseteq \dots, I_1 \supseteq I_2 \supseteq \dots$ , it is called a 'nested' sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| <ul> <li>Give an example of a nested sequenced of nonempty open intervals whose intersection (2 marks)</li> <li>Give an example of a nested sequenced of open intervals whose intersection is not empty</li> <li>(2 marks)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |

Prove that intersection that a nested sequence of closed intervals of the form iii.

 $I_1 \supseteq I_2 \supseteq \dots \dots$  is not empty

(4 marks)

### **QUESTION THREE (20 MARKS)**

- a) Let A and B be sets in a universal set U, prove that  $\chi_{A \cap B} = \chi_A \chi_B$  where  $\chi_A$  is the characteristic function of A and  $\chi_A \chi_B$  is the product of functions (6 marks) b) Prove the distributive laws i.e.  $B \cap (\cup_k A_k) = \cup_k (B \cap A_k)$ i. (4 marks)  $B \cup (\cap_k A_k) = \cap_k (B \cup A_k)$ ii. (4 marks)
- $A_m = \{m, 2m, 3m, \dots : m \in N\}$ , determine and explain the following sets c) Let i.  $A_3 \cap A_7$  $A_3 \cup A_7$ (2 marks) ii. (2 marks)  $\cup_m A_m$ iii. (1 marks)  $\bigcap_m A_m$ iv. (1 marks)

#### **QUESTION FOUR (20 MARKS)**

a) The prerequisites in a college is a familiar partial ordering of available classes. Let M be a

set of mathematics courses at XYZ College. Define  $A \prec B$  if class A is a prerequisite of class B, below is a list of mathematics courses and their prerequisites

| Class    | Prerequisite |  |
|----------|--------------|--|
| Math 122 | None         |  |
| Math 201 | Math 122     |  |
| Math 205 | Math 122     |  |
| Math 206 | Math 205     |  |
| Math 301 | Math 201     |  |
| Math 302 | Math 301     |  |

| Math 401 | Math 201, Math 205 |
|----------|--------------------|
| Math 403 | math 206, Math401  |

### **Required:**

| i.   | Draw an Hasse diagram for the partial ordering of these classes | (3 marks) |
|------|-----------------------------------------------------------------|-----------|
| ii.  | Find all the minimal and maximal elements of these classes      | (3 marks) |
| iii. | Determine the first and last element if they exist.             | (2 marks) |

A student wants to take eight mathematics courses, but only one per semester;

- iv. Which choices does he have in her first and last semester? (2 marks)
- v. Suppose he wants to take Math 205 in his first year (first or second semester) and Math

301 in his senior year (7<sup>th</sup> or 8<sup>th</sup> semester), explain all possible ways he can take the eight Subjects. (5 marks)

```
b) Let be an ordinal number. Prove that \lambda + 1 is the immediate successor of \lambda (5 marks) (5 marks)
```

# **QUESTION FIVE (20 MARKS)**

| a) Prove that the intervals [0,1] and (0,1] are equivalent. | (5 marks) |
|-------------------------------------------------------------|-----------|
| b) Prove that the unit interval [0,1] is non-denumerable    | (5 marks) |
| c) Prove that a countable union of finite sets is countable | (5 marks) |
| d) Prove that every infinite set contains a countable set   | (5 marks) |
|                                                             |           |