CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

SECONDARY YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE MATHEMATICS

MATH 205: ELEMENTS OF SET THEORY

STREAMS: BSC (MATHS)
TIME: 2 HOURS
DAY/DATE: FRIDAY 07/12/2018
8.30 A.M. -10.30 A.M.

INSTRUCTIONS:

- Answer Question ONE and any other TWO Questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE (30 MARKS)

a) For each of the following cases, determine whether it represents a function. If it is a function, state whether it is injective
i. To each of the 24 student in math 205, assign the gender
ii. To each student in Chuka university, assign a registration number
iii. To each student in first year, assign the semester course units
iv. _To each book written by a single author, assign the author
v. To each positive number, assign its square root

$$
A_{n}=\{n, n+2\}
$$

b) Given the sets , where n is a positive integer evaluate

c) Find the domain of the function $f: R \rightarrow R_{\text {defined by }} f(x)=\frac{4}{\sqrt{x^{2}-4}} \quad$ (2 marks)

$$
A=\left\{11+(-1)^{n} \frac{1}{n}\right\}
$$

d) Consider the set
where n is a positive integer
i. Find the supremum and the infimum of A
(2 marks)
ii. Find all the limit points of A
(1 marks)
e) With an appropriate example, show that a bounded sequence is not necessarily convergent
marks)
f) Consider the function $f: R \rightarrow R \underset{\text { defined by }}{ } f(x)=x^{2}+1$

$$
f: D \rightarrow R
$$

i. Find the largest set D such that \quad is injective

$$
f: R \rightarrow T
$$

ii. Find the smallest set T such that \quad is onto 3 marks)
g) Let A and B be sets. Show that the product order on $A \times B$ defined by $^{(a, b)<(c, d)}{ }_{\text {if }} a \leq c$ $b \leq d \quad A \times B$ and is a partial order on
h) Prove that the set of integers is countable
h) Prove that the set of integers is countable
i) Prove that if the limit of a sequence exists, then it is unique
j) State the Axiom of choice

QUESTION TWO (20 MARKS)

a) Distinguish the following
i. A restriction and an inclusion map (3 marks)
ii. A countable and uncountable set
iii. A linearly ordered set and a poset
$f: R \rightarrow R \quad f(x)=\frac{|x|}{x}: x \neq 0 \quad f(0)=0$.
b) Consider the function defined by and Determine

$$
\frac{R}{f}
$$

i. The quotient sets
ii. The image

$$
\begin{equation*}
I_{1}, I_{2}, \ldots \ldots \ldots . \quad I_{1} \supseteq I_{2} \supseteq \ldots \ldots \ldots \tag{2marks}
\end{equation*}
$$

c) Given a sequence intervals \quad such that , it is called a 'nested' sequence.
i. Give an example of a nested sequenced of nonempty open intervals whose intersection is empty.
ii. Give an example of a nested sequenced of open intervals whose intersection is not empty
iii. Prove that intersection that a nested sequence of closed intervals of the form

$$
I_{1} \supseteq I_{2} \supseteq \ldots \quad \text { is not empty }
$$

QUESTION THREE (20 MARKS)

a) Let A and B be sets in a universal set U , prove that $\chi_{A \cap B}=\chi_{A} \chi_{B}{ }^{\chi_{A}}$ where ${ }^{\chi_{A}}$ is the characteristic function of A and $\chi_{A} \chi_{B}$ is the product of functions (6 marks)
b) Prove the distributive laws i.e.

$$
B \cap\left(\cup_{k} A_{k}\right)=\cup_{k}\left(B \cap A_{k}\right)
$$

i. (4 marks)

$$
B \cup\left(\cap_{k} A_{k}\right)=\cap_{k}\left(B \cup A_{k}\right)
$$

ii.

$$
A_{m}=\{m, 2 m, 3 m, \ldots \ldots \ldots: m \in N\}
$$

c) Let , determine and explain the following sets

$$
A_{3} \cap A_{7}
$$

i.

$$
A_{3} \cup A_{7}
$$

ii.

$$
\cup_{m} A_{m}
$$

iii.

$$
\cap_{m} A_{m}
$$

iv.
(2 marks)
(1 marks)
(1 marks)

QUESTION FOUR (20 MARKS)

a) The prerequisites in a college is a familiar partial ordering of available classes. Let M be a set of mathematics courses at XYZ College. Define ${ }^{A<B}$ if class A is a prerequisite of class B , below is a list of mathematics courses and their prerequisites

Class
Math 122
Math 201
Math 205
Math 206
Math 301
Math 302

Prerequisite
None
Math 122
Math 122
Math 205
Math 201
Math 301

Math 401
Math 403

Math 201, Math 205
math 206, Math401

Required:

i. Draw an Hasse diagram for the partial ordering of these classes
(3 marks)
ii. Find all the minimal and maximal elements of these classes
(3 marks)
iii. Determine the first and last element if they exist.

A student wants to take eight mathematics courses, but only one per semester;
iv. Which choices does he have in her first and last semester? (2 marks)
v. Suppose he wants to take Math 205 in his first year (first or second semester) and Math 301 in his senior year ($7^{\text {th }}$ or $8^{\text {th }}$ semester), explain all possible ways he can take the eight Subjects.
(5 marks)
$\lambda \quad \lambda+1$
b) Let be an ordinal number. Prove that is the immediate successor of ${ }^{\lambda}$ (marks)

QUESTION FIVE (20 MARKS)

a) Prove that the intervals $[0,1]$ and $(0,1]$ are equivalent.
(5 marks)
b) Prove that the unit interval [0,1$]$ is non-denumerable
(5 marks)
c) Prove that a countable union of finite sets is countable
(5 marks)
d) Prove that every infinite set contains a countable set
(5 marks)

