CHUKA

UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS

MATH 204: ALGEBRAIC STRUCTURES

STREAMS: AS ABOVE
TIME: 2 HOURS
DAY/DATE: WEDNESDAY 5/12/2018
11.30 A.M - 1.30 A.M.

INSTRUCTIONS:

- Answer Question ONE and any other TWO Questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE (30 MARKS)

a) Define the following terms
i. A normal subgroup of a group G
ii. The kernel of homomorphism
iii. A cyclic group
iv. An ideal of a ring R

$$
x * y=x+y-5
$$

b) Let $\begin{aligned} & \text { inverse of } 10001\end{aligned}$
be a binary on the set of integers. Find the identity element and the
c) Given that is a homomorphism of groups, prove that the kernel of normal subgroup of G
is a (5 marks)
d) Prove that every cyclic group is abelian

$$
a, b, c \in G \quad a \circ b=a \circ c \quad b=c
$$

e) Let G be a group and , show that imply (3 marks)
f) The addition and part of the multiplication table for the ring $\mathrm{R}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ are given below. Use the distributive laws to complete the multiplication table below

+	a	b	c
a	a	b	c
b	b	c	a
c	c	a	b

$*$	a	b	c
a	a	a	a
b	a	c	
c	a		

g) Let R be the ring of all 2 X 2 matrices over Z with the usual addition and multiplication of matrices.
i. Show that the subset of R consisting of all matrices of theform

$$
T=\left\{\left.\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right] \right\rvert\, a, b, c \in Z\right\}
$$

is a non-commutativesubring with unity.
ii. Which elements of T are invertible?

$$
I=\left\{\left.\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \right\rvert\, a, b \in Z\right\}
$$

iii. Find if is an ideal of T

QUESTION TWO (20 MARKS)
a) Identify which of the following maps are group homomorphism and if it is, find its kernel

$$
\varphi(x)=2^{x} \forall x \in G
$$

i. G is the group of non-zero real numbers under multiplication and

$$
\phi(x)=x+1
$$

ii. G is the group of real numbers under addition and
b) If $\alpha=(714), \beta=(4123)$, and $\sigma=(34126)$ in S_{7}. Compute $\alpha \sigma^{-1} \beta$ as a single permutation.
c) Given that $S=\{$ All real numbers $\}$. Define $a * b=\frac{a+b}{1+a b}$. Is $\quad i \quad$ associative? (5 marks)
d) Show that the set $S=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right],\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\right\}$ forms a cyclic group under matrix multiplication.

QUESTION THREE (20 MARKS)

$$
(a b)^{-1}=a^{-1} b^{-1} \forall a, b \in G
$$

a) Prove that a group G is abelianiff
b) Given the set $A=\{5,15,25,35\}$
i. Show that A is a group under multiplication modulo 40
ii. Find the identity element
iii. Show that this group is isomorphic to the group formed by invertible elements

$$
\text { in }^{Z_{8}}
$$

c) Consider the group $D_{3}=<a, b: a^{2}=b^{3}=e ; b a=a b^{2} \quad>$ and the subgroup $H=\left\{e, b, b^{2}\right\}$.
D_{3}
i. List the right and left cosets of H in
ii. Is H a normal subgroup of ?

QUESTION FOUR (20 MARKS)

$$
a, b \in R \quad b a=1
$$

a) Show that if R is a ring and ,where a is not a zero divisor, then marks)

$$
x^{2}=x
$$

b) Let R be a ring such that every element satisfiesthe equation , provethat Ris commutative
c) Let X be a non-empty set and Rbe the setoff all subsetsof X . define addition and multiplication in R as follows
$A+B=A \cup B-A \cap B$
$A^{*} B=A \cap B$

QUESTION FIVE (20 MARKS)

a) Construct the multiplication table for the group of symmetries of a square
b) List all its subgroups
c) Show that the subgroup given by $H=\left\{e, b^{2}\right\}$ is a normal subgroup of $\quad D_{4} \quad$ (6 marks)

