UNIVERSITY

CHUKA

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE MATHEMATICS AND BACHELOR OF SCIENCE IN ACTURIAL SCIENCE

MATH 125: DISCRETE MATHEMATICS

STREAMS: "AS ABOVE"

DAY/DATE: FRIDAY 07/12/2018

INSTRUCTIONS:

- Answer Question **ONE** and any other **TWO** Questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be **No** use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE (30 MARKS)

- a) Use mathematical induction to prove that $n^2 \ge 2n+1$ $n \ge 3$ (5 marks) b) Translate the logical equivalence into an identity in Boolean algebra (3 marks)
- c) Describe a Lexographic ordering in a set $A_1 \times A_2$ where A_1 and A_2 are linearly ordered $\prec (4,1)$
- sets. Use this order to explain why (3,4) (3 marks)
 d) Verify whether or not the relation represented by the matrix below is either reflexive or symmetric. (4marks)

TIME: 2 HOURS

11.30 A.M. - 1.30 P.M.

	$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$	
	$4x \equiv 6 \pmod{10}$	
e)	Solve the linear congruence equation	(4 marks)
	$f(x) = 7x^3 - 4x^2 + 3x - 11$	
f)	Find the product of the polynomials and	
	$g(x) = 15x^3 + 3x^2 - x - 14$ over Z_5	(4 marks)
g)	$A = \{0,1,2,3\}$ Let R be a relation defined on the set containing the ordered (0,1), (1,1),(1,2),(2,0),(2,2) and (3,0). Determine i. The reflexive closure of R	l pairs
	ii. The symmetric closure of R	(4 marks)
h)	Determine the validity of the following argument S_1 : Thieves are jailed S_2 : Serious people read good books S_3	
	: Graduates are serious people Conclusion: No graduate is thief	(3 marks)

QUESTION TWO (20 MARKS)

$S = \{1, 2, \dots, 15\}$		(a,b)R(c,d) at	d = bc
a) Let and	R be a relation on S defined by	(a,b)R(c,d) if and only if a	
i. Show that R is an e	equivalence relation	(6 marks	s)
ii. Find the equivalent	ce class of (1,2)	(3 marks	s)
b) Let R be an equivalent; equivalent; aRb i. [a] = [b] ii. $[a] \cap [b] \neq \phi$	ce relation on a set A. Prove tha		
111.		(6 marks	s)

MATH 125

(x + y)' = x'y' c) Prove the DeMorgan's law in Boolean algebra

QUESTION THREE (20 MARKS)

a) Use the principle of mathematical induction to prove the sum of a finite number of a

$$\sum_{k=0}^{n} ar^{k} = \frac{ar^{k+1} - a}{r-1}$$

(5 marks)

(6 marks)

geometric progression with an initial term a and a common ratio r. i.e. where $r \neq 1$ and k is non negative integer

b) Let a=938 and b=1281. Use the division algorithm to find the gcd(a,b) and therefore find integers m and n such that d=am +bn (6 marks)

 $33x \equiv 31 \pmod{280}$

c) Solve the linear congruence equation

$$x(x+y) = x$$

d) Prove the absorption law using identities of Boolean algebra explaining each (3 marks)

QUESTION FOUR (20 MARKS)

$$f(x) = 34x^4 - 47x^3 + 54x^2 - 44x + 97 \equiv 0 \pmod{8}$$

<u>a)</u>Solve the congruence equation

(10 marks)

(5 marks)

$$a_n = 2a_{n-1} + 3a_{n-2}$$

b) Consider the third order homogeneous recurrence relation i. Find the general solution

 $a_0 = 1a_1 = 3,$ ii. Find the initial solution given (5 marks)

QUESTION FIVE (20 MARKS)

marks)

a) Prerequisites in a college are partial ordering of available classes. Denote A is a requisite $A \prec B$

of B by $A \prec B$. Let C be the ordered set of mathematics courses and their prerequisite as shown below.

Class	Math	Math						
	101	201	250	251	340	341	450	500
Prerequisite	None	Math	Math	Math	Math	Math	Math	Math
		101	101	250	201	340	201,25	250,251
							0	

i. Draw with explanations the Hasse diagram for the partial ordering of the classes

(3

ii. Find all the minimal and maximal elements of C and verify them (4 marks)

(5 marks)

MATH 125

iii.	Does C have a first or last element? Explain	(4 marks)
	D_{120}	
<u>c)</u> Co	nsider the Boolean algebra	
i.	Find its elements and indicate their complements	(4 marks)
ii.	Find the set A of atoms	(2 marks)
iii.	State with reasons whether or not the following sets are sub-algebras	
	$X = \{1, 2, 6, 120\} \qquad Y = \{1, 2, 5, 24, 6, 20, 60, 120\}$	
		(4
	marks)	
