CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION (SCIENCE), BACHELOR OF SCIENCE (ECOSTAT), BACHELOR OF SCIENCE (MATHS, PHYSICS, COMPUTER SCIENCE), BACHELOR OF ARTS (ECON/MATH) AND BACHELOR OF SCIENCE (ELECTRONIC ENGINEERING)

MATH 124: GEOMETRY AND LINEAR ALGEBRA

STREAMS: BED (SCI,ARTS) BSC(ECON STAT,MATH,PHYS,COMP SCI) BA(ECON MATH), BSC (E.E) BSC (ACTUARIAL SCI)

TIME: 2 HOURS

DAY/DATE: THURSDAY 13/12/2018
11.30 A.M - 1.30 P.M

INSTRUCTIONS

- Answer question one and any other two questions
- Do not write on the question paper

QUESTION ONE (COMPULSORY) (30 MARKS)
(a) Determine the equation of a circle whose diameter has end points $(4,-1)$ and $(-6,7)$.
marks]
(b) Find the equation of the ellipse which passes through the origin and has foci at $(-1,1)$ and $(1,1)$
(c) Given $A=\left[\begin{array}{ccc}2 & 3 & -3 \\ 2 & -1 & 2 \\ 2 & 4 & -4\end{array}\right]$ find A^{-1}
(d) Determine the area of the triangle whose verticals are at $\mathrm{P}(3,2,2), \mathrm{Q}(1,-1,2)$ and
$\mathrm{R}(2,1,1)$
(e) Given $\mathcal{Z}=4-3 \mathrm{i}$, determine a and b given.

$$
\frac{\dot{z}}{z}=\mathrm{a}+\mathrm{bi}
$$

(f) Convert the cartessian equation $x^{2}-y^{2}=\left(x^{2}+y^{2} \dot{b}^{2} \quad\right.$ into polar form $\quad[3$ marks]
(g) Determine the shortest distance between the point $(1,3)$ and the line whose equation is $3 \mathrm{x}-2 \mathrm{y}+5=0 \quad$ [3 marks]
(h) (i) Find the co-ordinates of the focus F of the parabola $y^{2}=16 x$. [2 marks]
(ii) Show that the point $\mathrm{P}(1,4)$ lies on the parabola $y^{2}=16 \mathrm{x}$.. [1 mark]
(iii) Calculate the distance PF for the parabola above.
[2 marks]

QUESTION TWO (20 MARKS)

(i) Define the parabola.
[2 marks]
(ii) Determine the equation of the parabola whose focus is $(1,1)$ and directrix is $\mathrm{y}=-\mathrm{x}-2$.
marks]
(iii) Show that points $(0,0)$ and $(8,0)$ lies on the parabola in (a) (ii) above. [2 marks]
(b) Convert the polar equation $r^{2} \sin 2 \theta=4$ into cartessian form.
marks]
(c) Two lines $L_{1} \wedge L_{2} \quad$ intersect at the point P. $L_{1} \quad$ passes through $(-4,0)$ and $(0,6)$. If the equation of $L_{2} \quad$ is $y=2 x-2$, determine the co-ordinates of P . marks]
(d) Find the volume of a parallel piped whose edges are $\vec{A}=2 \underset{\sim}{i}-3 \mathrm{j}+4 \underset{\sim}{\boldsymbol{B}} \quad \vec{\sim}=\underset{\sim}{\text { i }}$ $+2 \mathrm{j}-\mathrm{k}$ and $\quad \vec{C}=3 \mathrm{i}-\mathrm{j}+2 \mathrm{k}$.
[3 marks]
(e) Determine the modulus argument form of the complex number. $Z=-3+2 \mathrm{i}$. [2 marks]

QUESTION THREE (20 MARKS)

(a) (i) Define the ellipse.
(ii) Derive the equation of the ellipse whose centre is the origin, major axis is the y-axis and minor axis is the x -axis.
(b) Determine the angle between the vectors
$a=\underset{\sim}{i}-2 \underset{\sim}{i}+4 \underset{\sim}{k} \quad$ and $b=-4 \underset{\sim}{i}+j-2 \underset{\sim}{k}$.
[3 marks]
(c) (i) Find the equation of a circle which passes through the points $(7,1),(0,0)$ and $(-1,7)$.
[5 marks]
(ii) Determine the centre and radius of the circle in (c) (i) above.
[2 marks]

QUESTION FOUR (20 MARKS)

(a) (i) Use the matrix inverse method to solve the system of equations.

$$
\begin{align*}
& 2 x+y+2 z=5 \\
& 2 y+4 x+3 z=9 \\
& 2 x+2 y+z=3 \tag{9marks}
\end{align*}
$$

(ii) Solve the system of equations in (a) (i) above using the Cramers's rule.
marks]
(b) Prove that $C^{2}=A^{2}+B^{2}-2 A B \cos \theta$ where \vec{A}, \vec{B} and \vec{C} are three sides of a triangle and θ is the angle between \vec{A} and \vec{B}. [3 marks]
(c) Find the equation of the ellipse with semi-major axis 4 and eccentricity $1 / 2$ if the centre is at the origin and major axis is horizontal.
[3 marks]

QUESTION FIVE (20 MARKS)

(a) (i) Define the hyperbola.
[2 marks]
(ii) Derive the equation of a hyperbola whose centre is at the origin and foci are along the x -axis.
[8 marks]
(b) Find the graph of (analyze) the equation

$$
x^{2}-4 \quad y^{2}-2 x+16 y-14=0
$$

marks]

