**CHUKA** 



### **UNIVERSITY EXAMINATIONS**

### EXAMINATION FOR THE AWARD OF DIPLOMA IN COMPUTER

PHYS 0101/0111: PRINCIPLES OF PHYSICS

STREAMS: DIP (COMP SCI)

TIME: 2 HOURS

DAY/DATE: THURSDAY 08/07/2021 8.30 A.M. – 10.30 A.M.

## **INSTRUCTIONS:**

• Answer question one and any other two questions.

# **Question One**

- a. Define the following terms
  - a. Vector quantity (1 mark)
  - b. Scalar quantity (1 mark)
  - c. Physical quantities (1 mark)
  - d. System of units (1 mark)
- b. Give two supplementary quantities stating the respective units (4 marks)
- c. State the two types of errors in measurements (2 marks)
- d. Explain how to minimize the errors above (2 marks)
- e. A truck of mass 2,000 kg starts from rest on horizontal rails. Find the speed 3 seconds after starting if the tractive force by the engine is1,000 N. (4 marks)
- f. A bullet of mass 10g is shot into water melon of mass 0.2kg which is resting on a platform. At the time of impact, the bullet is travelling horizontally at 20ms<sup>-1</sup>.
   Calculate the common velocity after impact (3 marks)
- g. A ray of light travelling through a liquid of absolute refractive index 1.4 is incident on the plane surface of a Perspex block at an angle of 55°. Calculate the angle of refraction in

the Perspex if it has an absolute refractive index 1.5 (4 marks)

- h. state two conditions for total internal reflection to take place. (2 marks)
- i. An object is placed 10cm in front of a concave mirror of radius of curvature15 cm. Find the position, nature, and magnification of the image in each case. (3 marks)
- j. List two applications of magnetic effect of electric current. (2 marks)

## **Question Two**

- a. State the three Newton's laws of motion giving the equations governing them(3 marks)
- b. Derive the Newton's second equation of motion. (4 marks)
- c. A wooden box of mass 30 kg rests on a rough floor. The coefficient of friction between the floor and the box is 0.6.Calculate
  - i. The force required to just move the box (2 marks)
  - ii. If a force of 200 N is applied the box with what acceleration will it move?

(2 marks)

- d. Differentiate between elastic and in elastic collisions (4 marks)
- e. Find the distance traveled by a car in the 7th second if it has an initial velocity of 10m/s and accelerating at the rate of 3m/sec<sup>2</sup> (5 marks)

### **Question Three**

- a. Give the three equations of linear motion (3 marks)
- b. Given that the velocity of a particle is  $V = m + nt^2$  where  $m = 10cm s^{-1}$  and  $n = 2cm s^{-1}$ 
  - i. Find the change in velocity of the particle in the time internal between t2 = 2s and t2 = 5s.(3marks)
  - ii. Find the average acceleration in this time interval. (2 marks)
  - iii. Find the instantaneous acceleration at time t1=2s (2 marks)
- c. A car starts from rest and accelerates at 10m/s<sup>2</sup> in 20 seconds. Find the final velocity of this car (3 marks)
- d. A boy rolls a ball along a flat straight platform. The ball possesses an initial velocity of 2ms<sup>-1</sup> when the boy releases it and it shown down with a constant negative acceleration of -2m s-<sup>2</sup>. How far does the ball roll before stopping, and how long does

it take to stop? (4 marks)

e. The mass of the moon is about one eighty-first, and its radius one fourth, that of the earth. What is the acceleration due to gravity on the surface of the moon? (3 marks)

## **Question Four**

(a) 240 V a.c. 3 6 V 24 W

It is required to run a 6-V, 24-W lamp from 240-V a.c. mains using a transformer as shown above.

- (i) Calculate the current that would be taken by the lamp when operating normally.

  (2 marks)
  - (ii) Calculate the turns ratio of the transformer you would use. (2 marks)
- (iii) Calculate the current taken by the primary coil of the transformer, assuming it to be 100% efficient. (2 marks)
- (iv) Why, in practice, is the efficiency of the transformer less than 100%?(3 marks)
- (b) State three factors that affect the resistance of a metallic conductor. (3 marks)
- (c) Four resistors are arranged as shown below



| Calculate:                                                                                          |                        |
|-----------------------------------------------------------------------------------------------------|------------------------|
| (i) The effective resistance                                                                        | (4 marks)              |
| (ii) calculate the potential difference across each resistor                                        | (4 marks)              |
|                                                                                                     |                        |
| Question Five                                                                                       |                        |
| 1. a) i) Define the following terms                                                                 |                        |
| Principle focus                                                                                     |                        |
| Focal length                                                                                        | (2 marks)              |
| ii) Show that image formed by a plane mirror is as far behind the mirror as the object is in front. |                        |
|                                                                                                     | (6 marks)              |
| b) An object is placed 20 cm from a concave mirror of focal length 15 cm, show using ray            |                        |
| construction the location of the image, describe the characteristics of the image (6 marks)         |                        |
| By applying mirror formula, find the position of an object that gives an                            | image located 15 cm in |
| front of a concave mirror of focal length10cm.                                                      | (6 marks)              |
|                                                                                                     |                        |