CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE		
PHYS 271: BASIC ELECTRONICS		
STREAMS:	TIME: 2 HOURS	
DAY/DATE: THURSDAY 08/07/2021	2.30 P.M -4.30 P.M	
INSTRUCTIONS:		
Answer question ONE and any other TWO questions		
Do not write on the question paper		
Physical constants		
Planks constant $h = 6.62607 \times 10^{-34} JS$		
Reduced planks constant $\hbar = 1.05457 \times 10^{-34} JS$		
Boltzmann constant $K = 1.38066 \times 10^{-23} J/K$		
Electron-Volt (ev) = $1.60218 \times 10^{-19} J$		
Elementary charge (q) = $1.60218 \times 10^{-19}C$		
QUESTION ONE (30 MARKS)		
a. Distinguish between intrinsic and extrinsic semiconductorsb. Using energy band diagrams, distinguish metals, insulators and s	(2marks) semiconductors	

(3marks)

- c. Using appropriate band diagrams differentiate between P-type and N-type semiconductors (4marks)
- d. (i)A Si sample is doped with 10¹⁷Arsenic atoms/cm³. Determine the equilibrium hole (P) concentration at 300K, given that the intrinsic carrier concentration of Si is

(4marks)

 $n_i = 9.65 \times 10^9 \, cm^{-3}$

(ii)Using appropriate band diagram show where the Fermi level (E_F) is relative to E_i.

(4marks)

e.	i) Define the term noise in a semiconductor device	(2marks)
	ii) Define the term noise power spectral density	(2marks)

f. The mobility of free electrons and holes in pure germanium are 3800 and 1800 cm²/V.S respectively. The corresponding values for pure silicon are 1300 and 500 cm²/V.S respectively. Determine the values of intrinsic conductivity for both germanium and silicon. Assume $n_i = 2.5 \times 10^{13} cm^{-3}$ for germanium and $n_i = 1.5 \times 10^{10} cm^{-3}$ for silicon at room temperature.

g. Differentiate between forward bias and reverse bias of a P-N junction

(4marks)

(5marks)

QUESTION TWO (20 MARKS)

- a) Explain the main difference between a Bipolar Junction Transistor (BJT) and a Field Effect Transistor (FET) (4marks)
- b) A BJT has $\alpha = h_{FB} = 0.99$. Determine h_{FE} (3marks)
- c) When a reverse gate voltage is applied to a JFET, The gate current is 1nA.
 Determine the resistance between gate and source (5marks)
- d) A FET has a driven current of 4mA. If the $I_{DSS} = 8mA$ and V_{GS} (off)=-6V. Find the values of V_{GS} and V_{P} . (8marks)

QUESTION 3 (20 MARKS)

- a) Briefly describe how a P-N junction is made. (6 marks)
- b) Given that germanium at room temperature $n_i = 2.5 \times 10^{13}/cm^3$, $\mu_n = 3800 \text{ cm}^2/\text{V-Vs}$, $\mu_p = 1800 \text{ cm}^2/\text{V-Vs}$ and a number of Germanium atoms/cm³ = 4.4×10^{22} . Determine the resistivity of germanium:

i.	in intrinsic condition at 300 K	(4 marks)
ii.	with donor impurity of 1 in 10^7	(6 marks)
iii.	with acceptor impurity of 1 in 10^8	(4 marks)

QUESTION FOUR (20 MARKS)

a) What is a Bipolar junction transistor

(2marks)

b) Briefly describe the operation of N-P-N transistor

(4marks)

c) Differentiate between avalanche breakdown and Zener breakdown

(4 marks)

d) Determine the base, collector and emitter currents and VCE for a CE circuit shown in the figure, For

 $V_{CC} = 10 \text{ V}, V_{BB} = 4 \text{ V}, R_B = 200 \text{ k}\Omega, R_C = 2 \text{ k}\Omega, V_{BE} \text{ (on)} = 0.7 \text{ V}, \text{ and } \beta = 200.$ (10 marks)

$$V_{BB} = 4 \vee \circ \underbrace{R_B = 200 \text{ k}\Omega}_{I_B}$$

QUESTION FIVE (20 MARKS)

a)	Briefly discuss four methods of classifying amplifiers	(8 marks)
b)	With the aid of a well labelled diagram, discuss how a transistor	can be used as an
	amplifier.	(12marks)