CHUKA



UNIVERSITY

# UNIVERSITY EXAMINATION

### **RESIT /SPECIAL EXAMINATION**

# EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION (SCIENCE, ARTS) BACHELOR OF SCIENCE

### MATH 411/409: FUNCTIONAL ANALYSIS

**STREAMS:** 

TIME: 2 HOURS

DAY/DATE: THURSDAY 04/11/2021

8.30 A.M – 10.30 A.M

#### **INSTRUCTIONS:**

- Answer question **ALL** questions
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room

## **QUESTION ONE: (30 MARKS)**

- (a) In each of the following give reasons whether the relations given are functions or not
  - (i)  $f = \{(7,2), (7,5)\}$
  - (ii)  $h = \{(2,6), (1,6)\}$
- (b) Distinguish an operator and a functional mapping on a vector space *X* (2 marks)
- (c) Distinguish a meager subset and a non-meager subset of a metric space X. Hence state without proof, Baire's Category Theorem (4 marks)
- (d) State the Parallelogram law as used in inner product spaces. Hence using an appropriate example, illustrate that all Banach spaces are not necessarily inner product spaces.

(6 marks)

(4 marks)

#### MATH 411/409

- (e) Let  $T: X \to Y$  be a linear operator from a normed linear space X into a normed linear space Y. Prove that if T is continuous at the origin it implies that T is uniformly continuous on X
- (4 marks)
  (f) (i) Distinguish strongly convergence and weak convergence of sequences in a normed linear space X
  - (ii) Hence prove that the weak limit of a weakly convergent sequence is unique
- (4 marks) (g) Distinguish an algebraic dual and a continuous dual (or simply the dual) of a linear space X (4 marks)

# **QUESTION TWO: (20 MARKS)**

- (a) Define a fixed point of a mapping T of a set X. Give two cases that illustrate a fixed point mapping. (3 marks)
- (b) Prove that an orthonormal set is linearly independent (5 marks)
- (c) Define a norm on a linear space X. Hence show that the mapping  $\|.\|: \mathbb{R}^n \to \mathbb{R}$  defined by  $\|x\|_{\infty} = \left(\left(\sum_{k=1}^n \|x_k\|^2\right)\right)^{\frac{1}{2}}$  is a normed space. (12 marks)

#### **QUESTION THREE: (20 MARKS)**

- (a) Prove that on the space of all sequences S, the mapping defined by
  - (i)  $P_1(x) = \sup |x_n| \forall n \ge 1$  is a semi-norm (5 marks)
  - (ii)  $p(x) = |x| = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|x_k|}{1+|x_k|}$  is a paranorm (5 marks)
- (b) Prove that strong convergence implies weak convergence, and with an appropriate counter example show that the converse is not necessarily true (10 marks)