## CHUKA



UNIVERSITY

## UNIVERSITY EXAMINATIONS

## RESIT/SPECIAL EXAMINATION

## EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION SCIENCE, BACHELOR OF ARTS AND BACHELOR OF SCIENCE

## MATH 400: TOPOLOGY 1

STREAMS: BSC EDUC, BA \& BSC
TIME: 2 HOURS
DAY/DATE: WEDNESDAY 03/11/2021
2.30 P.M - 4.30 P.M.

## INSTRUCTIONS:

- Answer ALL questions.
- Do not write on the question paper.


## QUESTION ONE: (30 MARKS)

(a) Distinguish the following terms as used in topology
(i) An indiscrete topology and a discrete topology
(ii) A dense subset and a nowhere dense subset
(iii) The interior of the point p and a neighborhood of the point p
(iv) A base and a subbase for the topology $\tau$
(v) $\quad a T_{1}$ and $T_{2}$ space
(b) Let $(X, \tau)$ be a topological space. Denote a derived set of $A$ by $A^{\prime}$ Prove that a subset $A \subset X$ is closed iff $A^{\prime} \subset A$.
(c) Let $f: x_{1} \rightarrow x_{2}$ where $x_{1}=x_{2}=\{0,1\}$ and are such that $\left(x_{1}, D\right)$ and $\left(x_{2}, \$\right)$ be defined by $f(1)=1$ and $f(0)=0$. Show that $f$ is not continous but $f^{-1}$ is continuous.
(a) Let $X=\{a, b, c, d, f\}$ and $\tau=$
$\{X, \emptyset,\{a\},\{b, c\},\{a, b, c\},\{c\},\{a, f\},\{f\},\{b, c, f\},\{a, b, c, f\}\}$. Let $A=\{a, c, d\}$. Show that b is a limit point of A but a is not.
(5 marks)
(b) Let $(X, \tau)$ be a topological space and $A, B \subset X$. Denote $A^{0}$ the interior of $A$.
(i) Using an appropriate example, show that $A^{0} \cup B^{0} \neq(A \cup B)^{0} \quad$ (4 marks)
(ii) Prove that $A^{0} \cap B^{0}=(A \cap B)^{0} \quad$ (4 marks)
(c) Let $p \in X$ and denote $N_{P}$ the set of all neighborhood of a point $p$. Prove that the following
(i) $\quad \forall$ pairs $N, M \in N_{P}, \quad N \cap M \in N_{P}$
(ii) If $N \in N_{P}$ and for every $M \subset X$ with $N \subset M$ it implies that $M \in N_{P}$
(3 marks

## QUESTION THREE: (20 MARKS)

(a) Consider the following topology on $X=\{a, b, c, d, e\}$ and $\tau=$ $\{\{a\},\{a, b\},\{a, c, d\},\{a, b, c, d\},\{a, b, e\}, X, \emptyset\}$. If $A=\{a, b, c\}$. Find
(i) The exterior of $A$
marks)
(ii) The boundary of $A$
(4 marks)
(iii) Hence show that the boundary of $\mathrm{A}, \delta A=\bar{A} \cap \overline{X / A}$
(3 marks)
(b) Define a local base for a topological space $X$. Hence prove that a point $p \in X$ is an accumulation point of $A \subset X$ iff every member of some local base $\beta_{p}$ at the point $p$ contains a point of $A$ different from $p$.
(c) Let $X=\{a, b, c, d\}$ with $\tau_{X}=\{\{a, b\},\{a\},\{b\}, X, \varnothing\}$ and Let $Y=\{x, y, z, t\}$ with $\tau_{Y}=\{\{x\},\{y\},\{x, y\}, Y, \varnothing\}$.

Define the function $f$ as


Show that the function $f$ is a homomorphism.

