CHUKA



UNIVERSITY

# UNIVERSITY EXAMINATIONS

# **RESIT/SPECIAL EXAMINATION**

# EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION SCIENCE, BACHELOR OF ARTS AND BACHELOR OF SCIENCE

MATH 400: TOPOLOGY 1

STREAMS: BSC EDUC, BA & BSC

TIME: 2 HOURS

DAY/DATE: WEDNESDAY 03/11/2021

2.30 P.M – 4.30 P.M.

#### **INSTRUCTIONS:**

- Answer ALL questions.
- Do not write on the question paper.

# **QUESTION ONE: (30 MARKS)**

(a) Distinguish the following terms as used in topology

- (i) An indiscrete topology and a discrete topology
- (ii) A dense subset and a nowhere dense subset
- (iii) The interior of the point p and a neighborhood of the point p
- (iv) A base and a subbase for the topology  $\tau$
- (v)  $a T_1 and T_2$  space

(10 marks)

- (b) Let  $(X, \tau)$  be a topological space. Denote a derived set of A by A' Prove that a subset  $A \subset X$  is closed iff  $A' \subset A$ . (5 marks)
- (c) Let f: x<sub>1</sub> → x<sub>2</sub> where x<sub>1</sub> = x<sub>2</sub> = {0,1} and are such that (x<sub>1</sub>, D)and (x<sub>2</sub>,\$) be defined by f(1) = 1 and f(0) = 0. Show that f is not continuous but f<sup>-1</sup> is continuous.

# **QUESTION TWO: (20 MARKS)**

- (a) Let  $X = \{a, b, c, d, f\}$  and  $\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}, \{c\}, \{a, f\}, \{f\}, \{b, c, f\}, \{a, b, c, f\}\}$ . Let  $A = \{a, c, d\}$ . Show that b is a limit point of A but a is not. (5 marks)
- (b) Let  $(X, \tau)$  be a topological space and  $A, B \subset X$ . Denote  $A^0$  the interior of A.
  - (i) Using an appropriate example, show that  $A^0 \cup B^0 \neq (A \cup B)^0$  (4 marks)
  - (ii) Prove that  $A^0 \cap B^0 = (A \cap B)^0$  (4 marks)
- (c) Let  $p \in X$  and denote  $N_p$  the set of all neighborhood of a point p. Prove that the following
  - (i)  $\forall$  pairs  $N, M \in N_P, N \cap M \in N_P$  (4mks)

(ii) If  $N \in N_P$  and for every  $M \subset X$  with  $N \subset M$  it implies that  $M \in N_P$ (3 marks)

# **QUESTION THREE: (20 MARKS)**

- (a) Consider the following topology on  $X = \{a, b, c, d, e\}$  and  $\tau = \{\{a\}, \{a, b\}, \{a, c, d\}, \{a, b, c, d\}, \{a, b, e\}, X, \emptyset\}$ . If  $A = \{a, b, c\}$ . Find
  - (i) The exterior of A (4 marks)
     (ii) The boundary of A (4 marks)
- (iii) Hence show that the boundary of A, δA = Ā ∩ X/A
  (3 marks)
  (b) Define a local base for a topological space X. Hence prove that a point p ∈ X is an accumulation point of A ⊂ X iff every member of some local base β<sub>p</sub> at the

point p contains a point of A different from p. (5 marks)

(c) Let  $X = \{a, b, c, d\}$  with  $\tau_X = \{\{a, b\}, \{a\}, \{b\}, X, \emptyset\}$  and Let  $Y = \{x, y, z, t\}$  with

$$\tau_Y = \{\{x\}, \{y\}, \{x, y\}, Y, \emptyset\}.$$

Define the function f as



Show that the function f is a homomorphism. (4 marks)