

UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELORS OF SCIENCE IN MATHEMATICS, BACHELORS OF ARTS (MATHS-ECONS)
 (MAY-JULY 2021)
 MATH 206: INTRODUCTION TO REAL ANALYSIS

STREAMS: "``as above ${ }^{\text {" }}$ - Y2S2
TIME: 2HRS

DAY/DATE:

INSTRUCTIONS:

- Answer question ONE and TWO other questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write on the question paper
- Write your answers legibly and use your time wisely

QUESTION ONE: (30 MARKS)

(a) Find if the following sets are bounded or not and if bounded find the sups and infs
(i) $S_{1}=\{x \in \mathbb{R}: 3 \leq x<7\}$
(3 marks)
(ii) $S_{2}=\left\{1+(-1)^{n} \frac{1}{n}: n \in \mathbf{N}:\right\}$
(iii) $S_{2}=\left\{1+(-1)^{n} \cdot n: n \in \mathbf{N}:\right\}$
(3 marks)
(b) Determine the accumulation points of each of the set of real numbers
(i) The set of natural numbers \mathbf{N};
(ii) $(a, b]$
(iii) The set of irrational points
(c) Let $A \subseteq \mathbb{R}$ be given by $A=\{x \in \mathbb{R}: 0<x \leq 1\}$. Show that the element $\frac{1}{2} \in A$ is an interior point of A whereas 1 is not
(d) Show that the subset $A \subset \mathbb{R}$ is closed if and only if $A=\bar{A}$
(e) Show that the set of squares of whole numbers is countable
(f) Let S be a non-empty subset of R. Prove that the real number A is the supremum of S if and only if both the following conditions are satisfied
(i) $x \leq A \quad \forall x \subset S$
(ii) $\forall \varepsilon>0 \quad \exists x^{\prime} \in S: A-\varepsilon<x^{\prime} \leq A$
(a) State without proof the following properties for real numbers.
(i) Completeness axiom
(ii) Archimedean Property

QUESTION TWO: (20 MARKS)

(a) Prove that $\sqrt{\mathrm{n}+1}-\sqrt{\mathrm{n}-1}$ for any integer $n \geq 1$ is an irrational number
(b) Given that $x, y, z \in \mathbb{R}$. Show that,
(i) If $x \neq 0$ and $x y=x z$ then, $y=z$
(ii) If $x<y$ then, $\frac{1}{y}<\frac{1}{x}$
(iii) $x<y$ if and only if $x^{2}<y^{2}$
(c) Prove that the set of real numbers \mathbb{R} is uncountable

QUESTION THREE: (20 MARKS)

(a) Using the $\varepsilon-\delta$ definition of limit of a function, prove that
(i) $\lim _{n \rightarrow \infty}\left(\frac{(-1)^{n}}{n+5}\right)=0$
(4 marks)
(ii) $\lim _{x \rightarrow 2}\left(x^{3}+x-10\right)=0$
(4 marks)
(iii) $\lim _{x \rightarrow \infty} e^{2 x}=\infty$
(4 marks)
(iv) $\lim _{n \rightarrow \infty}\left(\frac{3 n-7}{7 n+9}\right)=\frac{3}{7}$
(b) Using the first principle show that the derivative of the function $y=x^{3}-5 x$ is $3 x^{2}-5$ (4 marks)

QUESTION FOUR: (20 MARKS)

(a) Prove that if the limit of a function exists then that limit is unique
(b) Determine whether the function $f(x)=x^{2}$ is contious at the point $\mathrm{x}=1$; $f(x)=\left\{\begin{array}{lr}x & 0 \leq x 1 \\ \frac{1}{2} x & 1 \leq x<2\end{array}\right.$ is continuous at $\mathrm{x}=1$
(4 marks)
(c) Using the function $f(x)=x^{\frac{1}{3}}$ at the point $x=0$, show that the property of continuity does not necessarily imply differentiability.
(d) Define an open subset A of \mathbb{R}. Hence show that A is open iff $A=A^{0}$

QUESTION FIVE: (20 MARKS)

(a) Define a Cauchy sequence $\left(x_{n}\right)$ in R . Hence prove that if a sequence $\left(x_{n}\right)$ is convergent then it is Cauchy
(b) Let $\left(x_{n}\right)$ be a sequence of real numbers prove that if $x_{n} \rightarrow x$ then, $\left|x_{n}\right| \rightarrow|x| . \quad$ (4 marks)
(c) When is a sequence $\left(x_{n}\right)$ said to be bounded?. Hence prove that every convergent sequence is bounded, but the converse of this does not always hold

