CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

RESIT/SPECIAL EXAMINATION

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE

MATH 204: ALGEBRAIC STRUCTURES

STREAMS: BSC

TIME: 2 HOURS

2.30 P.M – 4.30 P.M.

DAY/DATE: FRIDAY 05/11/2021

INSTRUCTIONS:

a)

• Answer ALL the questions.

QUESTION ONE (30 MARKS)

Defin	e the following terms	
i.	A subgroup H of a group G	(1 mark)
ii.	A homomorphism of groups	(1 mark)
iii.	The characteristic of a ring	(1 mark)
iv.	A principal ideal	(1marks)

b) Let S be a set of four elements given by $S = \{A, B, C, D\}$. In the table below, all the elements of S are listed in a row at the top and in a column at the left. The result x * y is found in the row that starts with x at the left and the column that has y at the top.

*	А	В	С	D
А	В	С	А	В
В	С	D	В	А
С	А	В	С	D
D	А	В	D	D
- · · · ·		1 2 2		

i.	Is the binary operation * commutative? Support your answer.	(2 marks)
ii.	Determine whether there is an identity element in S for *	(2 marks)
iii.	If there is an identity element, which elements in S are invertible?	(2 marks)

- c) Given a group G, define the centre of G,(z(G)) and show that it is a normal subgroup of G (5 marks)
- d) Let G be a cyclic group generated by a i.e. $G = \langle a \rangle$. Prove that G is abelian. (5 marks)

MATH 204

e) The addition and part of the multiplication table for the ring R={a,b,c,d} are given below. Use the distributive laws to complete the multiplication table below (5 marks)

(•)				
+	А	В	С	D
А	А	А	С	D
В	В	С	D	А
С	С	D	А	В
D	D	Α	В	С

	А	В	С	D
А	Α	А	А	А
В	Α	С		D
С	Α		А	
D	Α		Α	С

f) Let I be an ideal of a ring R, prove that the set $K = \{x \in R : xa = 0 \forall a \in R\}$ is an ideal of R (5 marks)

QUESTION TWO (20 MARKS)

a)	Consider the	set $R = \{[0], [2], [4], [6], [8]\} \subseteq Z_{10}$.	
----	--------------	--	--

	i.	Construct addition and multiplication tables for R using operations	s as defined in		
		Z_{10}	(4 marks)		
	ii.	Show that R is a commutative ring with unity.	(2 mars)		
	iii.	Show that R a subring of Z_{10}	(2 marks)		
	iv.	Does R have zero divisors?	(2 marks)		
	v.	Is R an integral domain?	(2 marks)		
	vi.	Is R a field?	(2 mark)		
b)	b) Consider the group $D_3 = \langle a, b : a^2 = b^3 = e; ba = ab^2 \rangle$ and the subgroup $H = \{e, a\}$.				
		i. List the right and left cosets of H in D_3	(5 marks)		
	i	ii. Is H a normal subgroup of D_3 ? Support your answer.	(1 marks)		
QUESTION THREE (20 MARKS)					
a)	State	e and prove Lagrange's theorem.	(7 marks)		
b)	Give	en that the set $S = \left\{ \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} x, y, z \in Z \right\}$ is a ring with respect to matrix	rix addition and		

multiplication, show that $I = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} | a, b \in Z \right\}$ is an ideal of S (7 marks)

c) Prove that he characteristic of an integral domain is either zero or a prime integer (6 marks)