CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS
 FOURTH YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF

MATH 449: PROBABILITY THEORY

STREAMS: BSc. MATHEMATICS
DAY/DATE: MONDAY 29/03/2021

TIME: 2 HOURS
11.30 A.M. - 1.30 P.M.

INSTRUCTIONS:

- Answer question ONE and TWO other questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION 1[30 MARKS]

(a) Define the following:
i) Convergence in probability [2 Marks]
ii) Convergence in distribution
[2 Marks]
(b) Briefly describe Bernoulli's weak law of large numbers.
(c) State and proof the Borel-Cantelli Lemma.
(d) Differentiate between the σ-field and the Borel field
(e) Consider a field denoted by \mathcal{A} and let $A_{1}, A_{2}, \ldots, A_{3} \in \mathcal{A}$. Show that $\mathrm{U}_{i=1}^{n} A_{i}=$ $\bigcap_{i=1}^{n} A_{i} \in \mathcal{A}$
(f) Define the indicator function $I_{A}(x)$ of a set A.
(g) Given the sets $A=\{2,3,4,5,6\}$ and $B=\{1,2,3,4,5,6,7\}$
obtain, $I_{A}(1), I_{B}(1), I_{A B}^{(1)}, I_{A-B}(3) I_{A \cup B}(7)$
[5 Marks]

QUESTION 2 [20 MARKS]

a) Consider a probability measure defined as $(\Omega, \mathcal{F}, \mathbb{P})$.
i) Explain each of the elements defined in the above space
ii) If $A \in \Omega$, explain all the properties of \mathbb{P} using mathematical expressions.
[4 marks]
b) Explain the term independence as used in probability theory.
c) Let X_{n} be i.i.d, $E\left(X_{n}\right)=\mu$ and $\operatorname{Var}\left(X_{n}\right)=\sigma^{2}$. Set $\bar{X}=\frac{1}{2} \sum_{i=1}^{n} X_{i}$, show that $\frac{1}{2} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \rightarrow \sigma^{2}$

QUESTION 3 [20 MARKS]

a) (Borel-Cantelli Lemma) Suppose $A_{1}, A_{2}, \ldots, A_{n}$ is a sequence of events
i) If $\sum \mathbb{P}\left(A_{n}\right)<\infty$ then, $\mathbb{P}\left(A_{n}, o . i\right)=\mathbb{P}\left(\operatorname{LimSup} A_{n}\right)=0$
ii) If $\sum \mathbb{P}\left(A_{n}\right)=\infty$ and $A_{1}, A_{2}, \ldots, A_{n}$ are independent then, $\mathbb{P}\left(A_{n}, o . i\right)=$ $\mathbb{P}\left(\operatorname{Lim~Sup~} A_{n}\right)=1$.
Prove
[10 marks]
b) Find $E(X)$ when
(i) X is the maximum of two dice rolls.
(ii) X is the number of tosses of biased coin until head appears

QUESTION 4 [20 MARKS]

a) If two dice were rolled once and we are interested in the events where the two numbers that show up are equal $\left(B_{1}\right)$, their sum are odd $\left(B_{2}\right)$, their sums are 14 $\left(B_{3}\right)$. Apply the concept of a probability to come up with Ω, \mathcal{F} and \mathbb{P} respectively for this experiment.
[6 marks]
b) Suppose X_{1}, X_{2}, \ldots is a sequence of random variables with $E\left(X_{n}\right) \rightarrow \mu$ and $\operatorname{Var}\left(X_{n}\right) \longrightarrow 0$. Show that $X_{n} \rightarrow \mu$.
c) If A_{n} is increasing then $P\left(A_{n}\right)$ is increasing and $\lim P\left(A_{n}\right)=P\left(\mathrm{U}_{n=1}^{\infty} A_{n}\right)$. Prove
[10 marks]

QUESTION 5 [20 MARKS]

Let X_{1}, X_{2}, \ldots be i.i.d with finite $E\left(X_{i}\right)=\mu$ and finite variance $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$. Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$, then the sequence $\frac{S_{n}-n \mu}{\sigma}$ converges to the standard normal in the distribution.(Hint: Central Limit Theorem).Prove.
[20 marks]

