CHUKA

UNIVERSITY EXAMINATIONS

FOURTH YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION (ARTS)

MATH 447: APPLIED MULTIVARIATE ANALYSIS
STREAMS:BSC,BED, BA
TIME: 2 HOURS
DAY/DATE: FRIDAY 24/09/2021
8.30 A.M - 10.30 A.M

INSTRUCTIONS
Answer Question ONE and any other TWO Questions

QUESTION ONE (30 MARKS)

(a) Outline five objectives of multivariate analysis
[5marks]
(b) Let $\bar{X} \sim N(\underline{\mu}, \Sigma)$ with $\underline{\mu^{\prime}}=\left[\begin{array}{lll}44 & 20 & 16\end{array}\right]$ and $\Sigma=\left[\begin{array}{ccc}64 & 8 & -\frac{16}{5} \\ 8 & 16 & 4 \\ -\frac{16}{5} & 4 & 4\end{array}\right]$

Find,
i. the distribution of $Y=\binom{X_{1}-X_{3}}{X_{1}+2 X_{2}+X_{3}}$ [5marks]
ii. the standard deviation matrix $V^{\frac{1}{2}}$ and the correlation matrix [3marks]
iii. the distribution of X_{1} given that $X_{2}=15$ and $X_{3}=18$
iv. the regression function of X_{3} on X_{1} and X_{2}
v. the partial correlation coefficient between X_{1} and X_{3} for fixed values of X_{2} [3marks]
(c) Given below is a data matrix

$$
X=\left[\begin{array}{lll}
1 & 4 & 4 \\
2 & 1 & 0 \\
5 & 6 & 4
\end{array}\right]
$$

Find

i. the generalized sample variance
ii. the total sample variance

QUESTION TWO (20 MARKS)

Observations on three responses are collected for two treatments. The observation vectors are as given below.

Treatment	A	A	A	A	A	B	B	B
X_{1}	8	9	5	4	4	6	7	5
X_{2}	15	14	12	9	10	6	8	10
X_{3}	4	5	4	4	3	9	8	7

Find
i. The matrix of sum of squares due to treatment
[7marks]
ii. The matrix of residual sum of squares
[3marks]
iii. the Wilk's lambda statistics and use it to test the hypothesis that there is no treatment effect at 5\% significance level
[6marks]
iv. State all the assumptions of MANOVA
[4marks]

QUESTION THREE (20 MARKS)

(a) Let data array X have the covariance matrix. $\quad \Sigma=\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 1\end{array}\right]$

Find the Eigen values and Eigen vectors of Σ and Σ^{-1}
[5marks]
(b) A random sample of size 10 was taken from a bivariate normal and sample mean and inverse of the sample variances were obtained as

$$
\underline{\bar{x}}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \text { and } S^{-1}=\left[\begin{array}{rr}
0.1890 & -0.099 \\
-0.099 & 0.266
\end{array}\right]
$$

Test the hypothesis $H_{0}: \underline{\mu}=\left[\begin{array}{l}3 \\ 5\end{array}\right]$ versus $H_{1}: \underline{\mu} \neq\left[\begin{array}{l}3 \\ 5\end{array}\right]$ at 5% significance level. [10marks]
(c) Let $\boldsymbol{P}=\frac{1}{13}\left(\begin{array}{cc}5 & 12 \\ -12 & 5\end{array}\right)$ and $\boldsymbol{Q}=\left(\begin{array}{cc}9 & -2 \\ -2 & 6\end{array}\right)$ Show that;
i. $\quad \boldsymbol{P}$ is an orthogonal matrix
[3marks]
ii. $\quad \boldsymbol{Q}$ is positive definite
[2marks]

QUESTION FOUR (20 MARKS)

(a) (i)Verify the relationships

$$
V^{\frac{1}{2}} \rho V^{\frac{1}{2}}=\Sigma \quad \text { and } \quad\left(V^{\frac{1}{2}}\right)^{-1} \Sigma\left(V^{\frac{1}{2}}\right)^{-1}=\rho
$$

(ii) Given

$$
\boldsymbol{\rho}=\left[\begin{array}{ccc}
1 & \frac{1}{6} & \frac{1}{5} \\
\frac{1}{6} & 1 & -\frac{1}{5} \\
\frac{1}{5} & -\frac{1}{5} & 1
\end{array}\right] \text { and } \boldsymbol{V}=\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 25
\end{array}\right]
$$

Determine $\boldsymbol{\Sigma}$
[10marks]
(b) Given the following data from a bivariate normal distribution

$$
X=\binom{242220172721221917}{21242924222025}
$$

Test the hypothesis that $H o: \mu=\left[\begin{array}{ll}24 & 19\end{array}\right]$ against $H_{l}: \mu \neq\left[\begin{array}{ll}24 & 19\end{array}\right]$ at 5% significance level [10marks]

QUESTION FIVE (20 MARKS)

The random vector $\underline{\boldsymbol{X}^{\prime}}=\left[\begin{array}{llll}\boldsymbol{X}_{\mathbf{1}} & \boldsymbol{X}_{\mathbf{2}} & \boldsymbol{X}_{\mathbf{3}} \boldsymbol{X}_{\mathbf{4}} \boldsymbol{X}_{5}\end{array}\right]$ with mean vector $\underline{\boldsymbol{\mu}_{\boldsymbol{x}}}=\left[\begin{array}{llll}\mathbf{2} & \mathbf{4}-\mathbf{1} \mathbf{3} \mathbf{0}\end{array}\right]$ and the variance- covariance matrix $\boldsymbol{\Sigma}=\left[\begin{array}{ccccc}4 & -1 & 1 / 2 & -1 / 2 & 0 \\ -1 & 3 & 1 & -1 & 0 \\ 1 / 2 & 1 & 6 & 1 & -1 \\ -1 / 2 & -1 & 1 & 4 & 0 \\ 0 & 0 & -1 & 0 & 2\end{array}\right]$

Partition $\underline{\boldsymbol{X}^{\prime}}=\left[\begin{array}{lllll}\boldsymbol{X}_{1} & \boldsymbol{X}_{\mathbf{2}} & \boldsymbol{X}_{\mathbf{3}} \boldsymbol{X}_{\mathbf{4}} \boldsymbol{X}_{5}\end{array}\right]$ into $\underline{\boldsymbol{X}^{\prime}}=\left[\underline{\boldsymbol{X}_{\mathbf{1}}} \underline{\boldsymbol{X}_{\mathbf{2}}^{\prime}}\right]^{\prime}$ where $\underline{\boldsymbol{X}_{\mathbf{1}}^{\prime}}=\left[\begin{array}{ll}\boldsymbol{X}_{\mathbf{1}} & \boldsymbol{X}_{\mathbf{2}}\end{array}\right]$ and
$\underline{\boldsymbol{X}_{2}^{\prime}}=\left[\begin{array}{lll}\boldsymbol{X}_{3} & \boldsymbol{X}_{4} & \boldsymbol{X}_{5}\end{array}\right]$. Let $A=\left[\begin{array}{cc}\mathbf{1} & -\mathbf{1} \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}\mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & -\mathbf{2}\end{array}\right]$.
[20marks]

Determine
i. $E\left(\underline{X_{1}}\right)$
vi. $\operatorname{COV}\left(\underline{X_{2}}\right)$
ii. $E\left(\underline{A X_{1}}\right)$
vii. $\operatorname{COV}\left(\underline{X_{1}}\right)$
iii. $E\left(X_{2}\right)$
iv. $E\left(\overline{B X}_{2}\right)$
v. $\operatorname{COV}\left(\underline{X_{1}}\right)$
viii. $\operatorname{COV}\left(B X_{2}\right)$
ix. $\operatorname{CoV}\left(\underline{X_{1}}, X_{2}\right)$
x. $\operatorname{COV}\left(\underline{A X_{1}}, B \underline{X_{2}}\right)$

