v. the partial correlation coefficient between X_1 and X_3 for fixed values of X_2 [3marks] (c) Given below is a data matrix

Page 1 of 4

UNIVERSITY

UNIVERSITY EXAMINATIONS

FOURTH YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR **OF SCIENCE AND BACHELOR OF EDUCATION (ARTS)**

MATH 447: APPLIED MULTIVARIATE ANALYSIS

STREAMS:BSC,BED, BA

DAY/DATE: FRIDAY 24/09/2021

CHUKA

INSTRUCTIONS

Answer Question ONE and any other TWO Questions

QUESTION ONE (30 MARKS)

(a) Outline five objectives of multivariate analysis

(b) Let
$$\bar{X} \sim N(\underline{\mu}, \Sigma)$$
 with $\underline{\mu'} = [44\ 20\ 16]$ and $\Sigma = \begin{bmatrix} 64 & 8 & -\frac{16}{5} \\ 8 & 16 & 4 \\ -\frac{16}{5} & 4 & 4 \end{bmatrix}$

Find,

- the distribution of $Y = \begin{pmatrix} X_1 X_3 \\ X_1 + 2X_2 + X_3 \end{pmatrix}$ i. [5marks]
- the standard deviation matrix $V^{\frac{1}{2}}$ and the correlation matrix ii. [3marks]

г

- iii. the distribution of X_1 given that $X_2 = 15$ and $X_3 = 18$ [5 marks]
- iv. the regression function of X_3 on X_1 and X_2 [3 marks]

[5marks]

TIME: 2 HOURS

8.30 A.M - 10.30 A.M

$$X = \begin{bmatrix} 1 & 4 & 4 \\ 2 & 1 & 0 \\ 5 & 6 & 4 \end{bmatrix}$$

Find

- i. the generalized sample variance
- ii. the total sample variance

QUESTION TWO (20 MARKS)

Observations on three responses are collected for two treatments. The observation vectors are as given below.

Treatment	А	А	А	А	А	В	В	В
X_1	8	9	5	4	4	6	7	5
X_2	15	14	12	9	10	6	8	10
X ₃	4	5	4	4	3	9	8	7

Find

i.	The matrix of sum of squares due to treatment	[7marks]
ii.	The matrix of residual sum of squares	[3marks]

- iii. the Wilk's lambda statistics and use it to test the hypothesis that there is no treatment effect at 5% significance level [6marks]
- iv. State all the assumptions of MANOVA [4marks]

QUESTION THREE (20 MARKS)

(a) Let data array X have the covariance matrix.	$\Sigma = \begin{bmatrix} 4\\0\\0 \end{bmatrix}$	0 9 0	0 0 1
--	--	-------------	-------------

Find the Eigen values and Eigen vectors of Σ and Σ^{-1} [5marks]

(b) A random sample of size 10 was taken from a bivariate normal and sample mean and inverse of the sample variances were obtained as

$$\underline{\bar{x}} = \begin{bmatrix} 2\\ 3 \end{bmatrix}$$
 and $S^{-1} = \begin{bmatrix} 0.1890 & -0.099\\ -0.099 & 0.266 \end{bmatrix}$

Test the hypothesis $H_0: \underline{\mu} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$ versus $H_1: \underline{\mu} \neq \begin{bmatrix} 3 \\ 5 \end{bmatrix}$ at 5% significance level. [10marks]

[6marks]

(c) Let
$$P = \frac{1}{13} \begin{pmatrix} 5 & 12 \\ -12 & 5 \end{pmatrix}$$
 and $Q = \begin{pmatrix} 9 & -2 \\ -2 & 6 \end{pmatrix}$ Show that;
i. P is an orthogonal matrix [3marks]
ii. Q is positive definite [2marks]

QUESTION FOUR (20 MARKS)

(a) (i)Verify the relationships

$$V^{\frac{1}{2}}\rho V^{\frac{1}{2}} = \Sigma$$
 and $(V^{\frac{1}{2}})^{-1}\Sigma (V^{\frac{1}{2}})^{-1} = \rho$

(ii) Given

$$\boldsymbol{\rho} = \begin{bmatrix} 1 & \frac{1}{6} & \frac{1}{5} \\ \frac{1}{6} & 1 & -\frac{1}{5} \\ \frac{1}{5} & -\frac{1}{5} & 1 \end{bmatrix} \text{ and } \boldsymbol{V} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 25 \end{bmatrix} \text{ Determine } \boldsymbol{\Sigma}$$

(b) Given the following data from a bivariate normal distribution $X = \begin{pmatrix} 24\,22\,20\,17\,27\,21\,22\,19\,17\\ 21\,24\,29\,24\,22\,20\,25\,26\,25 \end{pmatrix}$

Test the hypothesis that $Ho: \mu = \begin{bmatrix} 24 & 19 \end{bmatrix}$ against $H_I: \mu \neq \begin{bmatrix} 24 & 19 \end{bmatrix}$ at 5% significance level

[10marks]

[10marks]

QUESTION FIVE (20 MARKS)

The random vector $\underline{X'} = [X_1 X_2 X_3 X_4 X_5]$ with mean vector $\underline{\mu_x} = [2 4 - 1 3 0]$ and the

variance- covariance matrix
$$\mathbf{\Sigma} = \begin{bmatrix} 4 & -1 & 1/2 & -1/2 & 0 \\ -1 & 3 & 1 & -1 & 0 \\ 1/2 & 1 & 6 & 1 & -1 \\ -1/2 & -1 & 1 & 4 & 0 \\ 0 & 0 & -1 & 0 & 2 \end{bmatrix}$$

Partition $\underline{X'} = [X_1 X_2 X_3 X_4 X_5]$ into $\underline{X'} = [\underline{X'_1} \underline{X'_2}]$ where $\underline{X'_1} = [X_1 X_2]$ and

$$\underline{X'_2} = [X_3 X_4 X_5]. \text{ Let } A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -2 \end{bmatrix}.$$
 [20marks]

Determine

- vi. $COV(\underline{X_2})$ vii. $COV(\underline{AX_1})$ $\frac{E(\underline{X_1})}{E(\underline{AX_1})}$ i.
- ii. vii.

iii.	$E(X_2)$	viii.	$COV(\underline{BX_2})$
iv.	$E(\underline{BX_2})$	ix.	$COV(\underline{X_1}, \underline{X_2})$
v.	$COV(\underline{X_1})$	х.	$COV(\underline{AX_1}, \underline{BX_2})$
