CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF CERTIFICATE IN ANIMAL HEALTH AND PRODUCTION

MATH 00100/00121: INTRODUCTORY MATHEMATICS

STR	EAMS: CERT (ANHE)	TIME: 2 HOURS					
DAY	//DATE: MONDAY 10/12/2018	2.30 PM – 4.30 PM					
INST	NSTRUCTIONS:						
Ansv	Answer Question One and any other Two Questions						
QUE	ESTION ONE (30 MARKS)						
(a)	Explain the following properties of real numbers	[3 marks]					
	 (i) distributive property (ii) Commutative property (iii) Multiplicative identity property 						
(b)	Write the equation of the line that is parallel to the line whose equation is $y=3x+6$ and passes through point (4,7) [3 marks]						
(c)	Are the lines L_1 and L_2 passing through the given pairs of points parallel or perpendicular?						
	$L_1(0, 3) (3, 1)$ and $L_2(-1, 4) (-7, -5)$	[3 marks]					
(d)	Solve the system of equations below by substitution method	od.					
	4x - 7y = -2						
<i>x</i> -	4 y = -3	[4 marks]					
	[] []						

(e) Given that A= $\begin{bmatrix} 1 & 2 \\ -4 & 9 \end{bmatrix}$ and $B = \begin{bmatrix} 11 & 5 \\ 0 & -2 \end{bmatrix}$, find the following

(i) (ii)	A+B A-B		[4 marks]
(f) If $f(x)$ marks]	κ)=ι {	<i>x</i> +3; <i>x</i> \leq 2	[3
	l	5;2< <i>x</i> <6	
		$x^{2}+1; x \ge 6$	
Find	(i)	f(1)	
	(ii)	<i>f</i> (10)	
	(iii)	f(5)	

- (g) Find the 17th term of the arithmetic progression with first term 5 and common difference 2. [3 marks]
- (h) A radio station tower was built in two sections. From a point 87 feet from the base of the tower, the angle of elevation of the top of the first section is 25°, and the angle of elevation of the top of the second section is 40°. What is the height of the top section of

elevation of the top of the second section is 40°. What is the height of the top section of tower (x)?

(i) solve the equation below using factorization method $3x^2=2x+8$ [3 marks]

QUESTION TWO (20 MARKS)

(a) Determine if each of the following is a polynomial giving your rationale. If it is, find the degree of the polynomial. [4 marks]

(i) $6x^3+3x^2$

(ii)
$$y^2 - 4y + 3$$

(iii) $y^2 + \frac{5}{y} - 4y + 3$

(iv) 10

(b) Use the factor theory to determine whether:

(i)
$$2x^3 + x^2 - 8x - 4$$
 has a factor of x-2

(ii) By dividing confirm the answer obtained in (i) above and hence express $2x^3+x^2-8x-4$ as a product of three linear factors. [6 marks]

(c) A ladder 10m long, leaning against a vertical wall makes an angle of 65 $^{\circ}$ with the ground.

[6 marks]

- (i) How high on the wall does the ladder reach
- (ii) How far is the foot of the ladder from the wall?
- (iii) What angle does the ladder make with the wall?

(d)	solve the system of equations by the method of elimination.	[4 marks]
-----	---	-----------

2x+3y=4x-2y=-5

QUESTION THREE (20 MARKS)

(a) If
$$f(x) = -4x + 9 \wedge g(x) = 2x - 7$$
, find;

(i) fog(x) and hence fog(2) [4

marks]

(ii)
$$gof(x)$$
 and hence $gof(5)$ [4

marks]

(b) Solve the simultaneous equations using matrix method.

5x + y = 7

$$3x-4y=18$$
(c) Given matrix $A = \begin{bmatrix} 0 & 6 & 2 \\ 3 & -2 & -3 \\ 4 & 7 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 8 & 6 & -4 \\ 9 & 2 & 10 \\ 3 & 4 & -1 \end{bmatrix}$

Find AB

[3 marks]

[4 marks]

(d) Find the inverse of the matrix

$$A = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

QUESTIN FOUR (20 MARKS)

- (a) An arithmetic progression has 3 as its first term. Also, the sum of the first 8 terms is twice the sum of the first 5 terms. Find the common difference. [5 marks]
- (b) If a number is added to 2, 16 and 58, it results in the first 3 geometric members. Find out the number and enumerate the first 3 members of the progression. [6 marks]
- (c) Show that x²+2x=(x+1)²-1. Hence use, competing square to solve x²+2x-3=0 [5 marks]
 (d) Solve the equation 2 sin²x=sin x for the values of x,0≤x≤360° [4 marks]
