CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN BIOMEDICAL SCIENCE AND TECHNOLOGY

BMET 350: BIOMEDICAL TECHNIQUES

STREAMS: TIME: 2 HOURS

DAY/DATE: THURSDAY 08/07/2021 8.30 A.M – 10.30 A.M

INSTRUCTIONS:

- i. Answer Question One and any other Two Questions
- ii. Do not write on the question paper

Question One (30 marks)

a. Give the underlying principle of spectrophotometry and hence outline its advantages.

(4 marks)

- b. Describe the Bradford assay technique as applied in protein determination. (6 marks)
- c. A fixed-angle rotor exhibits a minimum radius, r_{min} , at the top of the centrifuge tube of 3.5 cm, and a maximum radius, r_{max} , at the bottom of the tube of 7.0 cm. If the rotor is operated at a speed of 20 000 r.p.m., what is the relative centrifugal field, RCF, at the top and bottom of the centrifuge tube? (6 marks)
- d. Briefly describe how polyacrylamide gels are prepared. (6 marks)
- e. Describe the application of silver staining in protein detection following electrophoresis.

(8 marks)

Question Two (20 marks)

a. Describe how the Laemmli discontinuous buffers are used in gel electrophoresis.

(10 marks)

BMET 350

b.	Descril	be how you can assay the activity of following enzymes	(10 marks)
	I.	Fumerase	
	II.	Pyruvate dehydrogenase	
	III.	α-ketogluterate dehydrogense	
	IV.	Succinyl coA synthetase	
	V.	Hexokinase	
Question Three (20 marks)			
a.	Describe the various biochemical processes in which centrifugation technique can be		
	applied	1.	(10 marks)
b.	. Describe the application of density gradient centrifugation as a separation technique.		
			(10 marks)
Question Four (20 marks)			
a.	Descril	be the Edman degradation chemistry of protein mapping	(10 marks)
b.	Descril	be how proteases can be used to achieve peptide mapping	(10 marks)